BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38323701)

  • 1. Possible pathogenetic role of ammonia in liver cirrhosis without hyperammonemia of venous blood: The so-called latency period of abnormal ammonia metabolism.
    Katayama K; Kakita N
    Hepatol Res; 2024 Mar; 54(3):235-243. PubMed ID: 38323701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical significance of the latency period of abnormal ammonia metabolism in chronic liver disease: Proposal of a new concept.
    Katayama K
    Hepatol Res; 2022 Jan; 52(1):75-80. PubMed ID: 34679199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc and protein metabolism in chronic liver diseases.
    Katayama K
    Nutr Res; 2020 Feb; 74():1-9. PubMed ID: 31891865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Branched-chain amino acids and muscle ammonia detoxification in cirrhosis.
    Dam G; Ott P; Aagaard NK; Vilstrup H
    Metab Brain Dis; 2013 Jun; 28(2):217-20. PubMed ID: 23315357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of oral branched-chain amino acids on hepatic encephalopathy and outcome in patients with liver cirrhosis.
    Kawaguchi T; Taniguchi E; Sata M
    Nutr Clin Pract; 2013 Oct; 28(5):580-8. PubMed ID: 23945292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives.
    Holecek M
    Metab Brain Dis; 2014 Mar; 29(1):9-17. PubMed ID: 23996300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ammonia and amino acid profiles in liver cirrhosis: effects of variables leading to hepatic encephalopathy.
    Holecek M
    Nutrition; 2015 Jan; 31(1):14-20. PubMed ID: 25220875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic fate of isoleucine in a rat model of hepatic encephalopathy and in cultured neural cells exposed to ammonia.
    Bak LK; Iversen P; Sørensen M; Keiding S; Vilstrup H; Ott P; Waagepetersen HS; Schousboe A
    Metab Brain Dis; 2009 Mar; 24(1):135-45. PubMed ID: 19067142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis.
    Davuluri G; Krokowski D; Guan BJ; Kumar A; Thapaliya S; Singh D; Hatzoglou M; Dasarathy S
    J Hepatol; 2016 Nov; 65(5):929-937. PubMed ID: 27318325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-Ornithine L-Aspartate for the Treatment of Sarcopenia in Chronic Liver Disease: The Taming of a Vicious Cycle.
    Butterworth RF
    Can J Gastroenterol Hepatol; 2019; 2019():8182195. PubMed ID: 31183339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: different sensitivity of red and white muscle.
    Holecek M; Kandar R; Sispera L; Kovarik M
    Amino Acids; 2011 Feb; 40(2):575-84. PubMed ID: 20614225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ammonia Removal by Metabolic Scavengers for the Prevention and Treatment of Hepatic Encephalopathy in Cirrhosis.
    Butterworth RF
    Drugs R D; 2021 Jun; 21(2):123-132. PubMed ID: 33890246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splanchnic circulation and metabolism in patients with acute liver failure.
    Clemmesen O
    Dan Med Bull; 2002 Aug; 49(3):177-93. PubMed ID: 12238280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of branched-chain amino acids on muscles under hyperammonemic conditions.
    Holeček M; Vodeničarovová M
    J Physiol Biochem; 2018 Nov; 74(4):523-530. PubMed ID: 30058052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS.
    Olde Damink SW; Jalan R; Redhead DN; Hayes PC; Deutz NE; Soeters PB
    Hepatology; 2002 Nov; 36(5):1163-71. PubMed ID: 12395326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium deficiency decreases the capacity for urea synthesis and markedly increases ammonia in rats.
    Mikkelsen ACD; Thomsen KL; Vilstrup H; Aamann L; Jones H; Mookerjee RP; Hamilton-Dutoit S; Frystyk J; Aagaard NK
    Am J Physiol Gastrointest Liver Physiol; 2021 Apr; 320(4):G474-G483. PubMed ID: 33404376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interorgan metabolism of ornithine phenylacetate (OP)--a novel strategy for treatment of hyperammonemia.
    Dadsetan S; Sørensen M; Bak LK; Vilstrup H; Ott P; Schousboe A; Jalan R; Keiding S; Waagepetersen HS
    Biochem Pharmacol; 2013 Jan; 85(1):115-23. PubMed ID: 23103564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of blood-ammonia homeostasis based on a quantitative analysis of nitrogen metabolism in the multiple organs involved in the production, catabolism, and excretion of ammonia in humans.
    Levitt DG; Levitt MD
    Clin Exp Gastroenterol; 2018; 11():193-215. PubMed ID: 29872332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonia metabolism in normal and portacaval-shunted rats.
    Cooper AJ
    Adv Exp Med Biol; 1990; 272():23-46. PubMed ID: 2103690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Branched-chain amino acids increase arterial blood ammonia in spite of enhanced intrinsic muscle ammonia metabolism in patients with cirrhosis and healthy subjects.
    Dam G; Keiding S; Munk OL; Ott P; Buhl M; Vilstrup H; Bak LK; Waagepetersen HS; Schousboe A; Møller N; Sørensen M
    Am J Physiol Gastrointest Liver Physiol; 2011 Aug; 301(2):G269-77. PubMed ID: 21636533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.