BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38323816)

  • 1. Biomimetic-Membrane-Protected Plasmonic Nanostructures as Dual-Modality Contrast Agents for Correlated Surface-Enhanced Raman Scattering and Photoacoustic Detection of Hidden Tumor Lesions.
    Srivastava I; Xue R; Huang HK; Wang Z; Jones J; Vasquez I; Pandit S; Lin L; Zhao S; Flatt K; Gruev V; Chen YS; Nie S
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):8554-8569. PubMed ID: 38323816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic Surface-Enhanced Raman Scattering Nanoparticles with Improved Dispersibility, Signal Brightness, and Tumor Targeting Functions.
    Srivastava I; Xue R; Jones J; Rhee H; Flatt K; Gruev V; Nie S
    ACS Nano; 2022 May; 16(5):8051-8063. PubMed ID: 35471820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive
    Nicolson F; Andreiuk B; Andreou C; Hsu HT; Rudder S; Kircher MF
    Theranostics; 2019; 9(20):5899-5913. PubMed ID: 31534527
    [No Abstract]   [Full Text] [Related]  

  • 4. Development of nanostars as a biocompatible tumor contrast agent: toward in vivo SERS imaging.
    D'Hollander A; Mathieu E; Jans H; Vande Velde G; Stakenborg T; Van Dorpe P; Himmelreich U; Lagae L
    Int J Nanomedicine; 2016; 11():3703-14. PubMed ID: 27536107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic gold nanostructures for biosensing and bioimaging.
    Ou X; Liu Y; Zhang M; Hua L; Zhan S
    Mikrochim Acta; 2021 Aug; 188(9):304. PubMed ID: 34435258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models.
    Register JK; Fales AM; Wang HN; Norton SJ; Cho EH; Boico A; Pradhan S; Kim J; Schroeder T; Wisniewski NA; Klitzman B; Vo-Dinh T
    Anal Bioanal Chem; 2015 Nov; 407(27):8215-24. PubMed ID: 26337748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Dual-Enhanced Surface-Enhanced Raman Scattering Probe Technology in the Diagnosis of Tumor Cells in Vitro.
    Zhao Y; Kong Y; Chen L; Sheng H; Fei Y; Mi L; Li B; Ma J
    Molecules; 2022 Jun; 27(11):. PubMed ID: 35684522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA Assembly of Plasmonic Nanostructures Enables
    Tan Y; Zhou J; Xing X; Wang J; Huang J; Liu H; Chen J; Dong M; Xiang Q; Dong H; Zhang X
    Anal Chem; 2023 Aug; 95(30):11236-11242. PubMed ID: 37467354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular and Cellular Detection by SERS-Active Plasmonic Nanostructures.
    Wu D; Chen Y; Hou S; Fang W; Duan H
    Chembiochem; 2019 Oct; 20(19):2432-2441. PubMed ID: 30957950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration.
    Mohs AM; Mancini MC; Singhal S; Provenzale JM; Leyland-Jones B; Wang MD; Nie S
    Anal Chem; 2010 Nov; 82(21):9058-65. PubMed ID: 20925393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.
    Adarsh N; Ramya AN; Maiti KK; Ramaiah D
    Chemistry; 2017 Oct; 23(57):14286-14291. PubMed ID: 28796314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total Aqueous Synthesis of Au@Cu
    Lv Q; Min H; Duan DB; Fang W; Pan GM; Shen AG; Wang QQ; Nie G; Hu JM
    Adv Healthc Mater; 2019 Jan; 8(2):e1801257. PubMed ID: 30548216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications.
    Vo-Dinh T; Liu Y; Fales AM; Ngo H; Wang HN; Register JK; Yuan H; Norton SJ; Griffin GD
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(1):17-33. PubMed ID: 25316579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging.
    Tian F; Conde J; Bao C; Chen Y; Curtin J; Cui D
    Biomaterials; 2016 Nov; 106():87-97. PubMed ID: 27552319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of two near-infrared windows for in vivo and intraoperative SERS.
    Lane LA; Xue R; Nie S
    Curr Opin Chem Biol; 2018 Aug; 45():95-103. PubMed ID: 29631122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of metal-phenolic-coated gold nanocuboids for surface-enhanced Raman scattering.
    Zhou M; Zhao C; Li Y; Guo Y; Liu H; Zhang Y; Liu Z
    Appl Opt; 2020 Jul; 59(20):6124-6130. PubMed ID: 32672759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-Enhanced Raman Probes Based on Gold Nanomaterials for in vivo Diagnosis and Imaging.
    Wen C; Wang L; Liu L; Shen XC; Chen H
    Chem Asian J; 2022 Apr; 17(7):e202200014. PubMed ID: 35178878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dual modal silver bumpy nanoprobe for photoacoustic imaging and SERS multiplexed identification of in vivo lymph nodes.
    Cha MG; Lee S; Park S; Kang H; Lee SG; Jeong C; Lee YS; Kim C; Jeong DH
    Nanoscale; 2017 Aug; 9(34):12556-12564. PubMed ID: 28820223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.
    Li J; Zhu Z; Zhu B; Ma Y; Lin B; Liu R; Song Y; Lin H; Tu S; Yang C
    Anal Chem; 2016 Aug; 88(15):7828-36. PubMed ID: 27385563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars.
    Nie L; Wang S; Wang X; Rong P; Ma Y; Liu G; Huang P; Lu G; Chen X
    Small; 2014 Apr; 10(8):1585-93, 1441. PubMed ID: 24150920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.