BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38323816)

  • 21. Rational Design of Branched Nanoporous Gold Nanoshells with Enhanced Physico-Optical Properties for Optical Imaging and Cancer Therapy.
    Song J; Yang X; Yang Z; Lin L; Liu Y; Zhou Z; Shen Z; Yu G; Dai Y; Jacobson O; Munasinghe J; Yung B; Teng GJ; Chen X
    ACS Nano; 2017 Jun; 11(6):6102-6113. PubMed ID: 28605594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging.
    Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D
    Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways.
    Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S
    Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-Modality Surface-Enhanced Resonance Raman Scattering and Multispectral Optoacoustic Tomography Nanoparticle Approach for Brain Tumor Delineation.
    Neuschmelting V; Harmsen S; Beziere N; Lockau H; Hsu HT; Huang R; Razansky D; Ntziachristos V; Kircher MF
    Small; 2018 Jun; 14(23):e1800740. PubMed ID: 29726109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmonic Dual-Gap Nanodumbbells for Label-Free On-Particle Raman DNA Assays.
    Kim JM; Kim J; Choi K; Nam JM
    Adv Mater; 2023 Apr; 35(15):e2208250. PubMed ID: 36680474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues.
    Hu Y; Cheng H; Zhao X; Wu J; Muhammad F; Lin S; He J; Zhou L; Zhang C; Deng Y; Wang P; Zhou Z; Nie S; Wei H
    ACS Nano; 2017 Jun; 11(6):5558-5566. PubMed ID: 28549217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch.
    Masterson AN; Hati S; Ren G; Liyanage T; Manicke NE; Goodpaster JV; Sardar R
    Anal Chem; 2021 Feb; 93(4):2578-2588. PubMed ID: 33432809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomimetic synthesis of highly biocompatible gold nanoparticles with amino acid-dithiocarbamate as a precursor for SERS imaging.
    Li L; Liu J; Yang X; Huang J; He D; Guo X; Wan L; He X; Wang K
    Nanotechnology; 2016 Mar; 27(10):105603. PubMed ID: 26867113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gd
    Xiao L; Tian X; Harihar S; Li Q; Li L; Welch DR; Zhou A
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 181():218-225. PubMed ID: 28365452
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance.
    Huang H; Wang JH; Jin W; Li P; Chen M; Xie HH; Yu XF; Wang H; Dai Z; Xiao X; Chu PK
    Small; 2014 Oct; 10(19):4012-9. PubMed ID: 24947686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immunomagnetic Capture and Multiplexed Surface Marker Detection of Circulating Tumor Cells with Magnetic Multicolor Surface-Enhanced Raman Scattering Nanotags.
    Wilson RE; O'Connor R; Gallops CE; Kwizera EA; Noroozi B; Morshed BI; Wang Y; Huang X
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47220-47232. PubMed ID: 32966038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photodegradable CuS SERS Probes for Intraoperative Residual Tumor Detection, Ablation, and Self-Clearance.
    Qiu Y; Lin M; Chen G; Fan C; Li M; Gu X; Cong S; Zhao Z; Fu L; Fang X; Xiao Z
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23436-23444. PubMed ID: 31252485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silent region barcode particle arrays for ultrasensitive multiplexed SERS detection.
    Liu X; Li M; Yu X; Shen L; Li W
    Biosens Bioelectron; 2023 Jan; 219():114804. PubMed ID: 36272345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiplex micro-SERS imaging of cancer-related markers in cells and tissues using poly(allylamine)-coated Au@Ag nanoprobes.
    Verdin A; Malherbe C; Müller WH; Bertrand V; Eppe G
    Anal Bioanal Chem; 2020 Nov; 412(28):7739-7755. PubMed ID: 32910264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols.
    Son J; Kim GH; Lee Y; Lee C; Cha S; Nam JM
    J Am Chem Soc; 2022 Dec; 144(49):22337-22351. PubMed ID: 36473154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual-Enhanced Raman Scattering-Based Characterization of Stem Cell Differentiation Using Graphene-Plasmonic Hybrid Nanoarray.
    Yang L; Lee JH; Rathnam C; Hou Y; Choi JW; Lee KB
    Nano Lett; 2019 Nov; 19(11):8138-8148. PubMed ID: 31663759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A ring-shaped protein clusters gold nanoparticles acting as molecular scaffold for plasmonic surfaces.
    Ardini M; Huang JA; Caprettini V; De Angelis F; Fata F; Silvestri I; Cimini A; Giansanti F; Angelucci F; Ippoliti R
    Biochim Biophys Acta Gen Subj; 2020 Aug; 1864(8):129617. PubMed ID: 32304715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Raman Reporter-Coupled Ag(core)@Au(shell) Nanostars for in Vivo Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers.
    Zeng L; Pan Y; Wang S; Wang X; Zhao X; Ren W; Lu G; Wu A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16781-91. PubMed ID: 26204589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative Assessment of Copper(II) in Wilson's Disease Based on Photoacoustic Imaging and Ratiometric Surface-Enhanced Raman Scattering.
    Feng H; Fu Q; Du W; Zhu R; Ge X; Wang C; Li Q; Su L; Yang H; Song J
    ACS Nano; 2021 Feb; 15(2):3402-3414. PubMed ID: 33508938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.