BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 38323878)

  • 1. Feasibility of bone marrow edema detection using dual-energy cone-beam computed tomography.
    Liu SZ; Herbst M; Schaefer J; Weber T; Vogt S; Ritschl L; Kappler S; Kawcak CE; Stewart HL; Siewerdsen JH; Zbijewski W
    Med Phys; 2024 Mar; 51(3):1653-1673. PubMed ID: 38323878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Dual-Energy Imaging of Bone Marrow Edema Using Multisource Cone-Beam CT with Model-Based Decomposition.
    Liu SZ; Zhou H; Osgood GM; Demehri S; Stayman JW; Zbijewski W
    Proc SPIE Int Soc Opt Eng; 2023 Feb; 12463():. PubMed ID: 38226341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-energy blended CBCT spectral imaging and scatter-decoupled material decomposition using a spectral modulator with flying focal spot (SMFFS).
    Deng Y; Zhou H; Wang Z; Wang AS; Gao H
    Med Phys; 2024 Apr; 51(4):2398-2412. PubMed ID: 38477717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast kV-switching and dual-layer flat-panel detector enabled cone-beam CT joint spectral imaging.
    Zhou H; Zhang L; Wang Z; Gao H
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38640917
    [No Abstract]   [Full Text] [Related]  

  • 5. Feasibility of dual-energy CBCT material decomposition in the human torso with 2D anti-scatter grids and grid-based scatter sampling.
    Altunbas C
    Med Phys; 2024 Jan; 51(1):334-347. PubMed ID: 37477550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model-based scatter artifacts correction for cone beam CT.
    Zhao W; Vernekohl D; Zhu J; Wang L; Xing L
    Med Phys; 2016 Apr; 43(4):1736. PubMed ID: 27036571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions.
    Sisniega A; Zbijewski W; Badal A; Kyprianou IS; Stayman JW; Vaquero JJ; Siewerdsen JH
    Med Phys; 2013 May; 40(5):051915. PubMed ID: 23635285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cone-beam CT for imaging of the head/brain: Development and assessment of scanner prototype and reconstruction algorithms.
    Wu P; Sisniega A; Stayman JW; Zbijewski W; Foos D; Wang X; Khanna N; Aygun N; Stevens RD; Siewerdsen JH
    Med Phys; 2020 Jun; 47(6):2392-2407. PubMed ID: 32145076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical note: TIGRE-DE for the creation of virtual monoenergetic images from dual-energy cone-beam CT.
    Keeler A; Lehmann M; Luce J; Kaur M; Roeske J; Kang H
    Med Phys; 2024 Apr; 51(4):2975-2982. PubMed ID: 38408013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unified scatter rejection and correction method for cone beam computed tomography.
    Altunbas C; Park Y; Yu Z; Gopal A
    Med Phys; 2021 Mar; 48(3):1211-1225. PubMed ID: 33378551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kV-MV approach to CBCT metal artifact reduction using multi-layer MV-CBCT.
    Jacobson MW; Harris T; Myronakis M; Lehmann M; Huber P; Ozoemelam I; Hu YH; Ferguson D; Fueglistaller R; Morf D; Berbeco R
    Phys Med Biol; 2024 Mar; 69(7):. PubMed ID: 38198730
    [No Abstract]   [Full Text] [Related]  

  • 12. Extension of the cone-beam CT field-of-view using two complementary short scans.
    Belotti G; Fattori G; Baroni G; Rit S
    Med Phys; 2024 May; 51(5):3391-3404. PubMed ID: 38043079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-arm orbits for metal artifact avoidance (MAA) in cone-beam CT.
    Wu P; Sheth N; Sisniega A; Uneri A; Han R; Vijayan R; Vagdargi P; Kreher B; Kunze H; Kleinszig G; Vogt S; Lo SF; Theodore N; Siewerdsen JH
    Phys Med Biol; 2020 Aug; 65(16):165012. PubMed ID: 32428891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A scatter correction method for contrast-enhanced dual-energy digital breast tomosynthesis.
    Lu Y; Peng B; Lau BA; Hu YH; Scaduto DA; Zhao W; Gindi G
    Phys Med Biol; 2015 Aug; 60(16):6323-54. PubMed ID: 26237154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-based dual-energy tomographic image reconstruction of objects containing known metal components.
    Liu SZ; Cao Q; Tivnan M; Tilley Ii S; Siewerdsen JH; Stayman JW; Zbijewski W
    Phys Med Biol; 2020 Dec; 65(24):245046. PubMed ID: 33113519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of proton dosimetry overriding planning CT with daily CBCT elaborated through generative artificial intelligence tools.
    Rossi M; Belotti G; Mainardi L; Baroni G; Cerveri P
    Comput Assist Surg (Abingdon); 2024 Dec; 29(1):2327981. PubMed ID: 38468391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic Value of Dual-Energy CT Virtual Noncalcium for the Assessment of Bone Marrow Edema of Wrist in Patients with Rheumatoid Arthritis.
    Xu G; Qian J; Yang Y; Ding Y; Chen Y; Li X; Zhang Y; Jia Z
    Acad Radiol; 2024 Mar; ():. PubMed ID: 38519303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and potential applications of a dual-layer flat-panel detector.
    Shi L; Lu M; Bennett NR; Shapiro E; Zhang J; Colbeth R; Star-Lack J; Wang AS
    Med Phys; 2020 Aug; 47(8):3332-3343. PubMed ID: 32347561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PET/SPECT/spectral-CT/CBCT imaging in a small-animal radiation therapy platform: A Monte Carlo study-Part I: Quad-modal imaging.
    Wang H; Li X; Xu L; Kuang Y
    Med Phys; 2024 Apr; 51(4):2941-2954. PubMed ID: 38421665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Library based x-ray scatter correction for dedicated cone beam breast CT.
    Shi L; Vedantham S; Karellas A; Zhu L
    Med Phys; 2016 Aug; 43(8):4529. PubMed ID: 27487870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.