These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38324109)

  • 1. Semi-supervised multi-source transfer learning for cross-subject EEG motor imagery classification.
    Zhang F; Wu H; Guo Y
    Med Biol Eng Comput; 2024 Jun; 62(6):1655-1672. PubMed ID: 38324109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MI-DABAN: A dual-attention-based adversarial network for motor imagery classification.
    Li H; Zhang D; Xie J
    Comput Biol Med; 2023 Jan; 152():106420. PubMed ID: 36529022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor imagery EEG decoding using manifold embedded transfer learning.
    Cai Y; She Q; Ji J; Ma Y; Zhang J; Zhang Y
    J Neurosci Methods; 2022 Mar; 370():109489. PubMed ID: 35090904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Source Semi-Supervised Transfer Learning (DS3TL) for Cross-Subject EEG Classification.
    Jiang X; Meng L; Wang Z; Wu D
    IEEE Trans Biomed Eng; 2024 Apr; 71(4):1308-1318. PubMed ID: 37971908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-stage transfer learning for motor imagery EEG recognition.
    Li J; She Q; Meng M; Du S; Zhang Y
    Med Biol Eng Comput; 2024 Jun; 62(6):1689-1701. PubMed ID: 38342784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-class motor imagery EEG classification using collaborative representation-based semi-supervised extreme learning machine.
    She Q; Zou J; Luo Z; Nguyen T; Li R; Zhang Y
    Med Biol Eng Comput; 2020 Sep; 58(9):2119-2130. PubMed ID: 32676841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online semi-supervised learning for motor imagery EEG classification.
    Zhang L; Li C; Zhang R; Sun Q
    Comput Biol Med; 2023 Oct; 165():107405. PubMed ID: 37678137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-dataset transfer learning for motor imagery signal classification via multi-task learning and pre-training.
    Xie Y; Wang K; Meng J; Yue J; Meng L; Yi W; Jung TP; Xu M; Ming D
    J Neural Eng; 2023 Oct; 20(5):. PubMed ID: 37774694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MI-CAT: A transformer-based domain adaptation network for motor imagery classification.
    Zhang D; Li H; Xie J
    Neural Netw; 2023 Aug; 165():451-462. PubMed ID: 37336030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information.
    Mahmoudi M; Shamsi M
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):957-972. PubMed ID: 30338495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-source deep domain adaptation ensemble framework for cross-dataset motor imagery EEG transfer learning.
    Miao M; Yang Z; Sheng Z; Xu B; Zhang W; Cheng X
    Physiol Meas; 2024 Jun; 45(5):. PubMed ID: 38772402
    [No Abstract]   [Full Text] [Related]  

  • 12. A shallow mirror transformer for subject-independent motor imagery BCI.
    Luo J; Wang Y; Xia S; Lu N; Ren X; Shi Z; Hei X
    Comput Biol Med; 2023 Sep; 164():107254. PubMed ID: 37499295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Source Decentralized Transfer for Privacy-Preserving BCIs.
    Zhang W; Wang Z; Wu D
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2710-2720. PubMed ID: 36112563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-supervised contrastive learning for EEG-based cross-subject motor imagery recognition.
    Li W; Li H; Sun X; Kang H; An S; Wang G; Gao Z
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38565100
    [No Abstract]   [Full Text] [Related]  

  • 15. [Progress of classification algorithms for motor imagery electroencephalogram signals].
    Liu T; Ye Y; Wang K; Xu L; Yi W; Xu M; Ming D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Oct; 38(5):995-1002. PubMed ID: 34713668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsupervised and semi-supervised domain adaptation networks considering both global knowledge and prototype-based local class information for Motor Imagery Classification.
    Zhang D; Li H; Xie J
    Neural Netw; 2024 Nov; 179():106497. PubMed ID: 38986186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-scale self-attention approach for analysing motor imagery signals in brain-computer interfaces.
    Bhatt MW; Sharma S
    J Neurosci Methods; 2024 Aug; 408():110182. PubMed ID: 38795979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subject-Independent Deep Architecture for EEG-Based Motor Imagery Classification.
    Sartipi S; Cetin M
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():718-727. PubMed ID: 38289842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transferring a deep learning model from healthy subjects to stroke patients in a motor imagery brain-computer interface.
    Nagarajan A; Robinson N; Ang KK; Chua KSG; Chew E; Guan C
    J Neural Eng; 2024 Jan; 21(1):. PubMed ID: 38091617
    [No Abstract]   [Full Text] [Related]  

  • 20. Motor Imagery Classification for Asynchronous EEG-Based Brain-Computer Interfaces.
    Wu H; Li S; Wu D
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():527-536. PubMed ID: 38252572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.