These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 38324567)

  • 1. Filament structure and subcellular organization of the bacterial intermediate filament-like protein crescentin.
    Liu Y; van den Ent F; Löwe J
    Proc Natl Acad Sci U S A; 2024 Feb; 121(7):e2309984121. PubMed ID: 38324567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The domain organization of the bacterial intermediate filament-like protein crescentin is important for assembly and function.
    Cabeen MT; Herrmann H; Jacobs-Wagner C
    Cytoskeleton (Hoboken); 2011 Apr; 68(4):205-19. PubMed ID: 21360832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermediate filament-like cytoskeleton of Caulobacter crescentus.
    Ausmees N
    J Mol Microbiol Biotechnol; 2006; 11(3-5):152-8. PubMed ID: 16983192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bacterial cytoskeleton: an intermediate filament-like function in cell shape.
    Ausmees N; Kuhn JR; Jacobs-Wagner C
    Cell; 2003 Dec; 115(6):705-13. PubMed ID: 14675535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermediate Filaments Supporting Cell Shape and Growth in Bacteria.
    Kelemen GH
    Subcell Biochem; 2017; 84():161-211. PubMed ID: 28500526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology of Caulobacter crescentus and the Mechanical Role of Crescentin.
    Kim JS; Sun SX
    Biophys J; 2009 Apr; 96(8):L47-9. PubMed ID: 19383443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial intermediate filaments: in vivo assembly, organization, and dynamics of crescentin.
    Charbon G; Cabeen MT; Jacobs-Wagner C
    Genes Dev; 2009 May; 23(9):1131-44. PubMed ID: 19417107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial cell curvature through mechanical control of cell growth.
    Cabeen MT; Charbon G; Vollmer W; Born P; Ausmees N; Weibel DB; Jacobs-Wagner C
    EMBO J; 2009 May; 28(9):1208-19. PubMed ID: 19279668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the bacterial intermediate filament crescentin in vitro and in vivo.
    Esue O; Rupprecht L; Sun SX; Wirtz D
    PLoS One; 2010 Jan; 5(1):e8855. PubMed ID: 20140233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The metabolic enzyme CTP synthase forms cytoskeletal filaments.
    Ingerson-Mahar M; Briegel A; Werner JN; Jensen GJ; Gitai Z
    Nat Cell Biol; 2010 Aug; 12(8):739-46. PubMed ID: 20639870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography.
    Briegel A; Dias DP; Li Z; Jensen RB; Frangakis AS; Jensen GJ
    Mol Microbiol; 2006 Oct; 62(1):5-14. PubMed ID: 16987173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the Lipopolysaccharide biosynthesis pathway interfere with crescentin-mediated cell curvature in Caulobacter crescentus.
    Cabeen MT; Murolo MA; Briegel A; Bui NK; Vollmer W; Ausmees N; Jensen GJ; Jacobs-Wagner C
    J Bacteriol; 2010 Jul; 192(13):3368-78. PubMed ID: 20435724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces.
    Bagchi S; Tomenius H; Belova LM; Ausmees N
    Mol Microbiol; 2008 Nov; 70(4):1037-50. PubMed ID: 18976278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial shape: concave coiled coils curve caulobacter.
    Margolin W
    Curr Biol; 2004 Mar; 14(6):R242-4. PubMed ID: 15043836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography.
    Norlén L; Masich S; Goldie KN; Hoenger A
    Exp Cell Res; 2007 Jun; 313(10):2217-27. PubMed ID: 17499715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filensin and phakinin form a novel type of beaded intermediate filaments and coassemble de novo in cultured cells.
    Goulielmos G; Gounari F; Remington S; Müller S; Häner M; Aebi U; Georgatos SD
    J Cell Biol; 1996 Feb; 132(4):643-55. PubMed ID: 8647895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prokaryotic cytoskeletons: in situ and ex situ structures and cellular locations.
    Kim KW
    Antonie Van Leeuwenhoek; 2019 Feb; 112(2):145-157. PubMed ID: 30128891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt-stable interaction of the amino-terminal head region of vimentin with the alpha-helical rod domain of cytoplasmic intermediate filament proteins and its relevance to protofilament structure and filament formation and stability.
    Traub P; Scherbarth A; Wiegers W; Shoeman RL
    J Cell Sci; 1992 Feb; 101 ( Pt 2)():363-81. PubMed ID: 1629250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the shapes of bacteria just got more complicated.
    Beveridge TJ
    Mol Microbiol; 2006 Oct; 62(1):1-4. PubMed ID: 16987172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How do disordered head domains assist in the assembly of intermediate filaments?
    Zhou X; Kato M; McKnight SL
    Curr Opin Cell Biol; 2023 Dec; 85():102262. PubMed ID: 37871501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.