These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 38324623)
21. Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning. Zuo C; Zhang Y; Cao C; Feng J; Jiao M; Chen L Nat Commun; 2022 Oct; 13(1):5962. PubMed ID: 36216831 [TBL] [Abstract][Full Text] [Related]
22. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data. Zhai Y; Chen L; Deng M Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389 [TBL] [Abstract][Full Text] [Related]
23. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Zeng Y; Yin R; Luo M; Chen J; Pan Z; Lu Y; Yu W; Yang Y Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36781228 [TBL] [Abstract][Full Text] [Related]
24. Unsupervised spatially embedded deep representation of spatial transcriptomics. Xu H; Fu H; Long Y; Ang KS; Sethi R; Chong K; Li M; Uddamvathanak R; Lee HK; Ling J; Chen A; Shao L; Liu L; Chen J Genome Med; 2024 Jan; 16(1):12. PubMed ID: 38217035 [TBL] [Abstract][Full Text] [Related]
25. Latent feature extraction with a prior-based self-attention framework for spatial transcriptomics. Li Z; Chen X; Zhang X; Jiang R; Chen S Genome Res; 2023 Oct; 33(10):1757-1773. PubMed ID: 37903634 [TBL] [Abstract][Full Text] [Related]
26. Complete spatially resolved gene expression is not necessary for identifying spatial domains. Lin S; Cui Y; Zhao F; Yang Z; Song J; Yao J; Zhao Y; Qian BZ; Zhao Y; Yuan Z Cell Genom; 2024 Jun; 4(6):100565. PubMed ID: 38781966 [TBL] [Abstract][Full Text] [Related]
27. Assembling spatial clustering framework for heterogeneous spatial transcriptomics data with GRAPHDeep. Liu T; Fang Z; Li X; Zhang L; Cao DS; Li M; Yin M Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38243703 [TBL] [Abstract][Full Text] [Related]
28. Graph deep learning enabled spatial domains identification for spatial transcriptomics. Liu T; Fang ZY; Li X; Zhang LN; Cao DS; Yin MZ Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080761 [TBL] [Abstract][Full Text] [Related]
29. Spatially Informed Graph Structure Learning Extracts Insights from Spatial Transcriptomics. Nie W; Yu Y; Wang X; Wang R; Li SC Adv Sci (Weinh); 2024 Dec; 11(45):e2403572. PubMed ID: 39382177 [TBL] [Abstract][Full Text] [Related]
30. SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Hu J; Li X; Coleman K; Schroeder A; Ma N; Irwin DJ; Lee EB; Shinohara RT; Li M Nat Methods; 2021 Nov; 18(11):1342-1351. PubMed ID: 34711970 [TBL] [Abstract][Full Text] [Related]
31. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Dong K; Zhang S Nat Commun; 2022 Apr; 13(1):1739. PubMed ID: 35365632 [TBL] [Abstract][Full Text] [Related]
32. Hexagonal image segmentation on spatially resolved transcriptomics. Gao J; Hu K; Zhang F; Cui X Methods; 2023 Dec; 220():61-68. PubMed ID: 37931852 [TBL] [Abstract][Full Text] [Related]
33. spatiAlign: an unsupervised contrastive learning model for data integration of spatially resolved transcriptomics. Zhang C; Liu L; Zhang Y; Li M; Fang S; Kang Q; Chen A; Xu X; Zhang Y; Li Y Gigascience; 2024 Jan; 13():. PubMed ID: 39028588 [TBL] [Abstract][Full Text] [Related]
34. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network. Huo Y; Guo Y; Wang J; Xue H; Feng Y; Chen W; Li X J Genet Genomics; 2023 Sep; 50(9):720-733. PubMed ID: 37356752 [TBL] [Abstract][Full Text] [Related]
35. MIGGRI: A multi-instance graph neural network model for inferring gene regulatory networks for Drosophila from spatial expression images. Huang Y; Yu G; Yang Y PLoS Comput Biol; 2023 Nov; 19(11):e1011623. PubMed ID: 37939200 [TBL] [Abstract][Full Text] [Related]
36. A graph self-supervised residual learning framework for domain identification and data integration of spatial transcriptomics. Huang J; Fu X; Zhang Z; Xie Y; Liu S; Wang Y; Zhao Z; Peng Y Commun Biol; 2024 Sep; 7(1):1123. PubMed ID: 39266614 [TBL] [Abstract][Full Text] [Related]
37. Deep graph level anomaly detection with contrastive learning. Luo X; Wu J; Yang J; Xue S; Peng H; Zhou C; Chen H; Li Z; Sheng QZ Sci Rep; 2022 Nov; 12(1):19867. PubMed ID: 36400802 [TBL] [Abstract][Full Text] [Related]
38. Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning. Chang Y; He F; Wang J; Chen S; Li J; Liu J; Yu Y; Su L; Ma A; Allen C; Lin Y; Sun S; Liu B; Javier Otero J; Chung D; Fu H; Li Z; Xu D; Ma Q Comput Struct Biotechnol J; 2022; 20():4600-4617. PubMed ID: 36090815 [TBL] [Abstract][Full Text] [Related]
39. De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc. Li R; Yang X Genome Biol; 2022 Jun; 23(1):124. PubMed ID: 35659722 [TBL] [Abstract][Full Text] [Related]
40. Revealing Tissue Heterogeneity and Spatial Dark Genes from Spatially Resolved Transcriptomics by Multiview Graph Networks. Li Y; Lu Y; Kang C; Li P; Chen L Research (Wash D C); 2023; 6():0228. PubMed ID: 37736108 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]