These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38324657)

  • 1. Nonsteady-State Electric Circuit in Electrophoresis on Paper: Thermal Consideration of Electrophoretic Lateral-Flow Assays.
    Ivanov NA; Panferov VG; Krylov SN
    Anal Chem; 2024 Feb; ():. PubMed ID: 38324657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretation of current-voltage relationships for "active" ion transport systems: II. Nonsteady-state reaction kinetic analysis of class-I mechanisms with one slow time-constant.
    Hansen UP; Tittor J; Gradmann D
    J Membr Biol; 1983 Jul; 75(2):141-69. PubMed ID: 25691374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state models in electrophoresis: from isotachoporesis to capillary zone electrophoresis.
    Beckers JL
    Electrophoresis; 1995 Nov; 16(11):1987-98. PubMed ID: 8748728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the electroosmotic flow effect on the efficiency of capillary electrophoresis.
    Andreev VP; Lisin EE
    Electrophoresis; 1992 Nov; 13(11):832-7. PubMed ID: 1483424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.
    Hjertén S; Mohabbati S; Westerlund D
    J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays.
    Ragavendar MS; Anmol CM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2408-11. PubMed ID: 23366410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical study of Joule heating effects on electrokinetic transportation in capillary electrophoresis.
    Xuan X; Li D
    J Chromatogr A; 2005 Feb; 1064(2):227-37. PubMed ID: 15739891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of the electroosmotic mobility on the applied electric field and its reproducibility in capillary electrophoresis.
    Bello MS; Capelli L; Righetti PG
    J Chromatogr A; 1994 Nov; 684(2):311-22. PubMed ID: 7987479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral microthermography for component discrimination and hot spot identification in integrated circuits.
    Bautista G; Mar Blanca C; Delica S; Buenaobra B; Saloma C
    Opt Express; 2006 Feb; 14(3):1021-6. PubMed ID: 19503422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A lateral flow-based portable platform for determination of reproductive status of cattle.
    Masello M; Lu Z; Erickson D; Gavalchin J; Giordano JO
    J Dairy Sci; 2020 May; 103(5):4743-4753. PubMed ID: 32197851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct analysis of lateral flow immunoassays for deoxynivalenol using electrospray ionization mass spectrometry.
    Geballa-Koukoula A; Gerssen A; Nielen MWF
    Anal Bioanal Chem; 2020 Nov; 412(27):7547-7558. PubMed ID: 32860092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High speed electrophoresis simulation for optimization of continuous flow electrophoresis and high performance capillary techniques: Part I. Computer model.
    Heinrich J; Wagner H
    Electrophoresis; 1992; 13(1-2):44-9. PubMed ID: 1587253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocellulose aerogel inserts for quantitative lateral flow immunoassays.
    Tang Y; Gao H; Kurth F; Burr L; Petropoulos K; Migliorelli D; Guenat OT; Generelli S
    Biosens Bioelectron; 2021 Nov; 192():113491. PubMed ID: 34271399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis.
    Porras SP; Marziali E; Gas B; Kenndler E
    Electrophoresis; 2003 May; 24(10):1553-64. PubMed ID: 12761785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research progress of electrically-driven force based online rapid separation and enrichment techniques].
    Liu Y; Chen Y; Xiao X; Xia L; Li G
    Se Pu; 2020 Oct; 38(10):1197-1205. PubMed ID: 34213116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gel Electrophoresis Chip Using Joule Heat Self-Dissipation, Short Run Time, and Online Dynamic Imaging.
    Xue J; Zhang Q; Cao J; Tian Y; Zha G; Liu X; Liu W; Wang Y; Gui D; Cao C
    Anal Chem; 2022 Feb; 94(4):2007-2015. PubMed ID: 34958211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joule heating in packed capillaries used in capillary electrochromatography.
    Rathore AS; Reynolds KJ; Colón LA
    Electrophoresis; 2002 Sep; 23(17):2918-28. PubMed ID: 12207300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of electroosmotic flow and its application to determination of electrophoretic mobilities in a poly(vinylpyrrolidone)-coated capillary.
    Kaneta T; Ueda T; Hata K; Imasaka T
    J Chromatogr A; 2006 Feb; 1106(1-2):52-5. PubMed ID: 16443452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Temperature on the Structure, Electrical Resistivity, and Charge Capacitance of Supported Lipid Bilayers.
    Abraham S; Heckenthaler T; Morgenstern Y; Kaufman Y
    Langmuir; 2019 Jul; 35(26):8709-8715. PubMed ID: 31244251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.