These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38324764)

  • 1. DLP Fabrication of Multiple Hierarchical Biomimetic GelMA/SilMA/HAp Scaffolds for Enhancing Bone Regeneration.
    Song P; Gui X; Wu L; Su X; Zhou W; Luo Z; Zhang B; Feng P; Wei W; Fan C; Wu Y; Zeng W; Zhou C; Fan Y; Zhou Z
    Biomacromolecules; 2024 Mar; 25(3):1871-1886. PubMed ID: 38324764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired Hydrogel Anchoring 3DP GelMA/HAp Scaffolds Accelerates Bone Reconstruction.
    Pu X; Tong L; Wang X; Liu Q; Chen M; Li X; Lu G; Lan W; Li Q; Liang J; Sun Y; Fan Y; Zhang X
    ACS Appl Mater Interfaces; 2022 May; 14(18):20591-20602. PubMed ID: 35500105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic Mineralized Hydroxyapatite Nanofiber-Incorporated Methacrylated Gelatin Hydrogel with Improved Mechanical and Osteoinductive Performances for Bone Regeneration.
    Wang H; Hu B; Li H; Feng G; Pan S; Chen Z; Li B; Song J
    Int J Nanomedicine; 2022; 17():1511-1529. PubMed ID: 35388269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printing of complicated GelMA-coated Alginate/Tri-calcium silicate scaffold for accelerated bone regeneration.
    Beheshtizadeh N; Farzin A; Rezvantalab S; Pazhouhnia Z; Lotfibakhshaiesh N; Ai J; Noori A; Azami M
    Int J Biol Macromol; 2023 Feb; 229():636-653. PubMed ID: 36586652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Strategy for Fabrication of Polyamide 66/Nanohydroxyapatite Composite Bone Repair Scaffolds by Low-Temperature Three-Dimensional Printing.
    Hu J; Wei J; Liu J; Yuan L; Li Y; Luo X; Li Y; Li J
    ACS Biomater Sci Eng; 2024 Jun; 10(6):4073-4084. PubMed ID: 38752228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printable Composite Biomaterials Based on GelMA and Hydroxyapatite Powders Doped with Cerium Ions for Bone Tissue Regeneration.
    Leu Alexa R; Cucuruz A; Ghițulică CD; Voicu G; Stamat Balahura LR; Dinescu S; Vlasceanu GM; Stavarache C; Ianchis R; Iovu H; Costache M
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Osteogenesis effect of dynamic mechanical loading on MC3T3-E1 cells in three-dimensional printing biomimetic composite scaffolds].
    Song X; Li H; Li R; Yuan Q; Liu Y; Cheng W; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):448-456. PubMed ID: 29806303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis.
    Song JE; Tripathy N; Lee DH; Park JH; Khang G
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration.
    Gu L; Zhang J; Li L; Du Z; Cai Q; Yang X
    Biomed Mater; 2019 Apr; 14(4):045001. PubMed ID: 30939454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering.
    Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q
    ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration.
    Zhao ZH; Ma XL; Zhao B; Tian P; Ma JX; Kang JY; Zhang Y; Guo Y; Sun L
    Cell Prolif; 2021 Jul; 54(7):e13043. PubMed ID: 34008897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility of silk methacrylate/gelatin-methacryloyl composite hydrogel and its feasibility as a vascular tissue engineering scaffold.
    Shi X; Wang X; Shen W; Yue W
    Biochem Biophys Res Commun; 2023 Apr; 650():62-72. PubMed ID: 36773341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanohydroxyapatite, Nanosilicate-Reinforced Injectable, and Biomimetic Gelatin-Methacryloyl Hydrogel for Bone Tissue Engineering.
    Shi Z; Zhong Q; Chen Y; Gao J; Pan X; Lian Q; Chen R; Wang P; Wang J; Shi Z; Cheng H
    Int J Nanomedicine; 2021; 16():5603-5619. PubMed ID: 34429602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An injectable and photocurable methacrylate-silk fibroin/nano-hydroxyapatite hydrogel for bone regeneration through osteoimmunomodulation.
    Zhou L; Chen D; Wu R; Li L; Shi T; Shangguang Z; Lin H; Chen G; Wang Z; Liu W
    Int J Biol Macromol; 2024 Apr; 263(Pt 1):129925. PubMed ID: 38311129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Morphological Characteristics and Biomineralization of 3D-Printed Gelatin/Hyaluronic Acid/Hydroxyapatite Composite Scaffolds on Bone Tissue Regeneration.
    Kim JW; Han YS; Lee HM; Kim JK; Kim YJ
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional (3D) printed biomimetic hierarchical scaffold with a covalent modular release system for osteogenesis.
    Chen G; Sun Y; Lu F; Jiang A; Subedi D; Kong P; Wang X; Yu T; Chi H; Song C; Liu K; Qi P; Yan J; Ji Y
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109842. PubMed ID: 31500042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing of reduced glutathione grafted gelatine methacrylate hydrogel scaffold promotes diabetic bone regeneration by activating PI3K/Akt signaling pathway.
    Wang L; Shen M; Hou Q; Wu Z; Xu J; Wang L
    Int J Biol Macromol; 2022 Dec; 222(Pt A):1175-1191. PubMed ID: 36181886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-printed PCL framework assembling ECM-inspired multi-layer mineralized GO-Col-HAp microscaffold for in situ mandibular bone regeneration.
    Yang Y; He H; Miao F; Yu M; Wu X; Liu Y; Fu J; Chen J; Ma L; Chen X; Peng X; You Z; Zhou C
    J Transl Med; 2024 Mar; 22(1):224. PubMed ID: 38429799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SLA-3d printed building and characteristics of GelMA/HAP biomaterials with gradient porous structure.
    Chen Q; Zou B; Wang X; Zhou X; Yang G; Lai Q; Zhao Y
    J Mech Behav Biomed Mater; 2024 Jul; 155():106553. PubMed ID: 38640694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.