These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38324764)

  • 41. Biomimetic periosteum-bone substitute composed of preosteoblast-derived matrix and hydrogel for large segmental bone defect repair.
    Yu Y; Wang Y; Zhang W; Wang H; Li J; Pan L; Han F; Li B
    Acta Biomater; 2020 Sep; 113():317-327. PubMed ID: 32574859
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration.
    El-Habashy SE; El-Kamel AH; Essawy MM; Abdelfattah EA; Eltaher HM
    Biomater Sci; 2021 Jun; 9(11):4019-4039. PubMed ID: 33899858
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functionalization of SF/HAP Scaffold with GO-PEI-miRNA inhibitor Complexes to Enhance Bone Regeneration through Activating Transcription Factor 4.
    Ou L; Lan Y; Feng Z; Feng L; Yang J; Liu Y; Bian L; Tan J; Lai R; Guo R
    Theranostics; 2019; 9(15):4525-4541. PubMed ID: 31285777
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Melt Electrowriting Combined with Fused Deposition Modeling Printing for the Fabrication of Three-Dimensional Biomimetic Scaffolds for Osteotendinous Junction Regeneration.
    Ma S; Zheng S; Li D; Hu W; Wang L
    Int J Nanomedicine; 2024; 19():3275-3293. PubMed ID: 38601348
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cell-Free Bilayered Porous Scaffolds for Osteochondral Regeneration Fabricated by Continuous 3D-Printing Using Nascent Physical Hydrogel as Ink.
    Gao J; Ding X; Yu X; Chen X; Zhang X; Cui S; Shi J; Chen J; Yu L; Chen S; Ding J
    Adv Healthc Mater; 2021 Feb; 10(3):e2001404. PubMed ID: 33225617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering.
    Kim H; Hwangbo H; Koo Y; Kim G
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403422
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D bioprinting by reinforced bioink based on photocurable interpenetrating networks for cartilage tissue engineering.
    Shen J; Song W; Liu J; Peng X; Tan Z; Xu Y; Liu S; Ren L
    Int J Biol Macromol; 2024 Jan; 254(Pt 1):127671. PubMed ID: 37884244
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cryogenic 3D Printing of GelMA/Graphene Bioinks: Improved Mechanical Strength and Structural Properties for Tissue Engineering.
    Santana MDV; Magulas MBS; Brito GC; Santos MC; de Oliveira TG; de Melo WGG; Argolo Neto NM; Marciano FR; Viana BC; Lobo AO
    Int J Nanomedicine; 2024; 19():10745-10765. PubMed ID: 39469448
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation and characterization of biomimetic gradient multi-layer cell-laden scaffolds for osteochondral integrated repair.
    Li M; Song P; Wang W; Xu Y; Li J; Wu L; Gui X; Zeng Z; Zhou Z; Liu M; Kong Q; Fan Y; Zhang X; Zhou C; Liu L
    J Mater Chem B; 2022 Jun; 10(22):4172-4188. PubMed ID: 35531933
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Titanium-enriched hydroxyapatite-gelatin scaffolds with osteogenically differentiated progenitor cell aggregates for calvaria bone regeneration.
    Ferreira JR; Padilla R; Urkasemsin G; Yoon K; Goeckner K; Hu WS; Ko CC
    Tissue Eng Part A; 2013 Aug; 19(15-16):1803-16. PubMed ID: 23495972
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D printed reduced graphene oxide-GelMA hybrid hydrogel scaffolds for potential neuralized bone regeneration.
    Zhang X; Zhang H; Zhang Y; Huangfu H; Yang Y; Qin Q; Zhang Y; Zhou Y
    J Mater Chem B; 2023 Feb; 11(6):1288-1301. PubMed ID: 36651822
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D bioprinting of DPSCs with GelMA hydrogel of various concentrations for bone regeneration.
    Wang W; Zhu Y; Liu Y; Chen B; Li M; Yuan C; Wang P
    Tissue Cell; 2024 Jun; 88():102418. PubMed ID: 38776731
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Porous zirconia/hydroxyapatite scaffolds for bone reconstruction.
    An SH; Matsumoto T; Miyajima H; Nakahira A; Kim KH; Imazato S
    Dent Mater; 2012 Dec; 28(12):1221-31. PubMed ID: 23018082
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering.
    Chen P; Liu L; Pan J; Mei J; Li C; Zheng Y
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():325-335. PubMed ID: 30678918
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomimetic Hydroxyapatite on 3D-Printed Nanoattapulgite/Polycaprolactone Scaffolds for Bone Regeneration of Rat Cranium Defects.
    Dai T; Wu X; Liu C; Ni S; Li J; Zhang L; Wang J; Tan Y; Fan S; Zhao H
    ACS Biomater Sci Eng; 2024 Jan; 10(1):455-467. PubMed ID: 38146624
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Digital Light Processing 3D Printing of Gyroid Scaffold with Isosorbide-Based Photopolymer for Bone Tissue Engineering.
    Verisqa F; Cha JR; Nguyen L; Kim HW; Knowles JC
    Biomolecules; 2022 Nov; 12(11):. PubMed ID: 36421706
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DLP 3D printing of high-resolution root scaffold with bionic bioactivity and biomechanics for personalized bio-root regeneration.
    Chen J; Gui X; Qiu T; Lv Y; Fan Y; Zhang X; Zhou C; Guo W
    Biomater Adv; 2023 Aug; 151():213475. PubMed ID: 37267749
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative study of gelatin cryogels reinforced with hydroxyapatites with different morphologies and interfacial bonding.
    Gu L; Zhang Y; Zhang L; Huang Y; Zuo D; Cai Q; Yang X
    Biomed Mater; 2020 Mar; 15(3):035012. PubMed ID: 32031987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanotextured silk fibroin/hydroxyapatite biomimetic bilayer tough structure regulated osteogenic/chondrogenic differentiation of mesenchymal stem cells for osteochondral repair.
    Shang L; Ma B; Wang F; Li J; Shen S; Li X; Liu H; Ge S
    Cell Prolif; 2020 Nov; 53(11):e12917. PubMed ID: 33001510
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation and biological properties of ZnO/hydroxyapatite/chitosan-polyethylene oxide@gelatin biomimetic composite scaffolds for bone tissue engineering.
    Lu X; Liu L; Feng S; Pan J; Li C; Zheng Y
    J Biomater Appl; 2022 Aug; 37(2):238-248. PubMed ID: 35487772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.