These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38324906)

  • 1. Mathematical complexities in radionuclide metabolic modelling: a review of ordinary differential equation kinetics solvers in biokinetic modelling.
    Mate-Kole EM; Dewji SA
    J Radiol Prot; 2024 May; 44(2):. PubMed ID: 38324906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical solutions in internal dose assessment: A comparison of Python-based differential equation solvers in biokinetic modeling.
    Mate-Kole EM; Margot D; Dewji SA
    J Radiol Prot; 2023 Oct; 43(4):. PubMed ID: 37848023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability of the ICRP's dose coefficients for members of the public. III. Plutonium as a case study of uncertainties in the systemic biokinetics of radionuclides.
    Leggett RW
    Radiat Prot Dosimetry; 2003; 106(2):103-20. PubMed ID: 14653331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a computer code to calculate the distribution of radionuclides within the human body by the biokinetic models of the ICRP.
    Matsumoto M; Yamanaka T; Hayakawa N; Iwai S; Sugiura N
    Radiat Prot Dosimetry; 2015 Mar; 163(4):446-57. PubMed ID: 25061129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive dose reconstruction methodology for former rocketdyne/atomics international radiation workers.
    Boice JD; Leggett RW; Ellis ED; Wallace PW; Mumma M; Cohen SS; Brill AB; Chadda B; Boecker BB; Yoder RC; Eckerman KF
    Health Phys; 2006 May; 90(5):409-30. PubMed ID: 16607174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-seeking radionuclides in the skeleton: current approach and recent developments in biokinetic modelling for humans and beagles.
    Luciani A; Polig E
    Radiat Prot Dosimetry; 2007; 127(1-4):140-3. PubMed ID: 17562648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods of improving brain dose estimates for internally deposited radionuclides
    Leggett RW; Tolmachev SY; Avtandilashvili M; Eckerman KF; Grogan HA; Sgouros G; Woloschak GE; Samuels C; Boice JD
    J Radiol Prot; 2022 Jul; 42(3):. PubMed ID: 35785774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scientific basis for the development of biokinetic models for radionuclide-contaminated wounds.
    Guilmette RA; Durbin PW
    Radiat Prot Dosimetry; 2003; 105(1-4):213-8. PubMed ID: 14526958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliability of a new biokinetic model of zirconium in internal dosimetry: part I, parameter uncertainty analysis.
    Li WB; Greiter M; Oeh U; Hoeschen C
    Health Phys; 2011 Dec; 101(6):660-76. PubMed ID: 22048485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential improvements in brain dose estimates for internal emitters.
    Leggett RW; Tolmachev SY; Boice JD
    Int J Radiat Biol; 2022; 98(4):644-656. PubMed ID: 30513240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The computation of ICRP dose coefficients for intakes of radionuclides with PLEIADES: biokinetic aspects.
    Fell TP
    Radiat Prot Dosimetry; 2007; 127(1-4):220-2. PubMed ID: 17921508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The work of the CONRAD task group 5.2: research studies on biokinetic models.
    Nosske D; Berkovski V; Birchall A; Blanchardon E; Cantone MC; Davis K; Giussani A; Luciani A; Marsh J; Oeh U; Ratia H; Lopez MA
    Radiat Prot Dosimetry; 2007; 127(1-4):93-6. PubMed ID: 17556343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IDAC-Bio, A Software for Internal Dosimetry Based on the New ICRP Biokinetic Models and Specific Absorbed Fractions.
    Andersson M; Leggett RW; Eckerman K; Almén A; Mattsson S
    Health Phys; 2022 Aug; 123(2):165-172. PubMed ID: 35594483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetry of metal tritide particles as evaluated by the ICRP 66 model and a biokinetic model from laboratory rats.
    Zhou Y; Cheng YS
    Health Phys; 2004 Feb; 86(2):155-60. PubMed ID: 14744049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models and phantoms for internal dose assessment.
    Giussani A
    Radiat Prot Dosimetry; 2015 Apr; 164(1-2):46-50. PubMed ID: 25305216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ICRP Publication 134: Occupational Intakes of Radionuclides: Part 2.
    Paquet F; Bailey MR; Leggett RW; Lipsztein J; Fell TP; Smith T; Nosske D; Eckerman KF; Berkovski V; Ansoborlo E; Giussani A; Bolch WE; Harrison JD;
    Ann ICRP; 2016 Dec; 45(3-4):7-349. PubMed ID: 28657340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical experience of the application of ICRP models in internal dose assessment.
    Peace MS
    Radiat Prot Dosimetry; 2003; 105(1-4):33-8. PubMed ID: 14526923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EURADOS work on internal dosimetry.
    Breustedt B; Blanchardon E; Castellani CM; Etherington G; Franck D; Giussani A; Hofmann W; Lebacq AL; Li WB; Noßke D; Lopez MA
    Ann ICRP; 2018 Oct; 47(3-4):75-82. PubMed ID: 29664321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic look-up tables on retention and excretion of radionuclides as a PC based support system for internal dosimetry.
    Ishigure N
    Radiat Prot Dosimetry; 2001; 93(2):161-5. PubMed ID: 11548339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 39th Lauriston S. Taylor Lecture: Dosimetry of Internal Emitters: Contribution of Radiation Protection Bodies and Radiological Events.
    Eckerman KF
    Health Phys; 2016 Feb; 110(2):192-200. PubMed ID: 26717179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.