These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38324914)
1. N-Terminal Proline Editing for the Synthesis of Peptides with Mercaptoproline and Selenoproline: Mechanistic Insights Lead to Greater Efficiency in Proline Native Chemical Ligation. Ludwig BA; Forbes CR; Zondlo NJ ACS Chem Biol; 2024 Feb; 19(2):536-550. PubMed ID: 38324914 [TBL] [Abstract][Full Text] [Related]
2. Traceless chemical ligation from S-, O-, and N-acyl isopeptides. Panda SS; Hall CD; Oliferenko AA; Katritzky AR Acc Chem Res; 2014 Apr; 47(4):1076-87. PubMed ID: 24617996 [TBL] [Abstract][Full Text] [Related]
3. Proline editing: a general and practical approach to the synthesis of functionally and structurally diverse peptides. Analysis of steric versus stereoelectronic effects of 4-substituted prolines on conformation within peptides. Pandey AK; Naduthambi D; Thomas KM; Zondlo NJ J Am Chem Soc; 2013 Mar; 135(11):4333-63. PubMed ID: 23402492 [TBL] [Abstract][Full Text] [Related]
4. Native Chemical Ligation via N-Acylurea Thioester Surrogates Obtained by Fmoc Solid-Phase Peptide Synthesis. Palà-Pujadas J; Blanco-Canosa JB Methods Mol Biol; 2020; 2133():141-161. PubMed ID: 32144666 [TBL] [Abstract][Full Text] [Related]
5. Peptide Thioester Formation via an Intramolecular N to S Acyl Shift for Peptide Ligation. Kawakami T Top Curr Chem; 2015; 362():107-35. PubMed ID: 25370522 [TBL] [Abstract][Full Text] [Related]
6. Peptidyl N,N-bis(2-mercaptoethyl)-amides as thioester precursors for native chemical ligation. Hou W; Zhang X; Li F; Liu CF Org Lett; 2011 Feb; 13(3):386-9. PubMed ID: 21175148 [TBL] [Abstract][Full Text] [Related]
7. Internal Activation of Peptidyl Prolyl Thioesters in Native Chemical Ligation. Gui Y; Qiu L; Li Y; Li H; Dong S J Am Chem Soc; 2016 Apr; 138(14):4890-9. PubMed ID: 26982082 [TBL] [Abstract][Full Text] [Related]
8. Thioester deprotection using a biomimetic NCL approach. Villamil V; Saiz C; Mahler G Front Chem; 2022; 10():934376. PubMed ID: 36072700 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and use of a pseudo-cysteine for native chemical ligation. Alves DA; Esser D; Broadbridge RJ; Beevers AP; Chapman CP; Winsor CE; Betley JR J Pept Sci; 2003 Apr; 9(4):221-8. PubMed ID: 12725243 [TBL] [Abstract][Full Text] [Related]
10. Synthetic procedure for N-Fmoc amino acyl-N-sulfanylethylaniline linker as crypto-peptide thioester precursor with application to native chemical ligation. Sakamoto K; Sato K; Shigenaga A; Tsuji K; Tsuda S; Hibino H; Nishiuchi Y; Otaka A J Org Chem; 2012 Aug; 77(16):6948-58. PubMed ID: 22816612 [TBL] [Abstract][Full Text] [Related]
11. Chemical synthesis of proteins using N-sulfanylethylanilide peptides, based on N-S acyl transfer chemistry. Otaka A; Sato K; Shigenaga A Top Curr Chem; 2015; 363():33-56. PubMed ID: 25467538 [TBL] [Abstract][Full Text] [Related]
12. Leveraging the Knorr Pyrazole Synthesis for the Facile Generation of Thioester Surrogates for use in Native Chemical Ligation. Flood DT; Hintzen JCJ; Bird MJ; Cistrone PA; Chen JS; Dawson PE Angew Chem Int Ed Engl; 2018 Sep; 57(36):11634-11639. PubMed ID: 29908104 [TBL] [Abstract][Full Text] [Related]
13. Enabling Cysteine-Free Native Chemical Ligation at Challenging Junctions with a Ligation Auxiliary Capable of Base Catalysis. Fuchs O; Trunschke S; Hanebrink H; Reimann M; Seitz O Angew Chem Int Ed Engl; 2021 Aug; 60(35):19483-19490. PubMed ID: 34165893 [TBL] [Abstract][Full Text] [Related]
14. Cysteinylprolyl imide (CPI) peptide: a highly reactive and easily accessible crypto-thioester for chemical protein synthesis. Yanase M; Nakatsu K; Cardos CJ; Konda Y; Hayashi G; Okamoto A Chem Sci; 2019 Jun; 10(23):5967-5975. PubMed ID: 31360403 [TBL] [Abstract][Full Text] [Related]
15. Methionine ligation strategy in the biomimetic synthesis of parathyroid hormones. Tam JP; Yu Q Biopolymers; 1998 Oct; 46(5):319-27. PubMed ID: 9754028 [TBL] [Abstract][Full Text] [Related]
16. Redox-Controlled Chemical Protein Synthesis: Sundry Shades of Latency. Agouridas V; Ollivier N; Vicogne J; Diemer V; Melnyk O Acc Chem Res; 2022 Sep; 55(18):2685-2697. PubMed ID: 36083810 [TBL] [Abstract][Full Text] [Related]
17. Biomimetic synthesis of cyclic peptides using novel thioester surrogates. Hemu X; Taichi M; Qiu Y; Liu DX; Tam JP Biopolymers; 2013 Sep; 100(5):492-501. PubMed ID: 23893856 [TBL] [Abstract][Full Text] [Related]
18. Chemical Protein Synthesis Using a Second-Generation N-Acylurea Linker for the Preparation of Peptide-Thioester Precursors. Blanco-Canosa JB; Nardone B; Albericio F; Dawson PE J Am Chem Soc; 2015 Jun; 137(22):7197-209. PubMed ID: 25978693 [TBL] [Abstract][Full Text] [Related]
19. Theoretical analysis of the detailed mechanism of native chemical ligation reactions. Wang C; Guo QX; Fu Y Chem Asian J; 2011 May; 6(5):1241-51. PubMed ID: 21365769 [TBL] [Abstract][Full Text] [Related]
20. From protein total synthesis to peptide transamidation and metathesis: playing with the reversibility of N,S-acyl or N,Se-acyl migration reactions. Melnyk O; Agouridas V Curr Opin Chem Biol; 2014 Oct; 22():137-45. PubMed ID: 25438800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]