These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38325370)

  • 1. De novo design of cavity-containing proteins with a backbone-centered neural network energy function.
    Xu Y; Hu X; Wang C; Liu Y; Chen Q; Liu H
    Structure; 2024 Apr; 32(4):424-432.e4. PubMed ID: 38325370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A backbone-centred energy function of neural networks for protein design.
    Huang B; Xu Y; Hu X; Liu Y; Liao S; Zhang J; Huang C; Hong J; Chen Q; Liu H
    Nature; 2022 Feb; 602(7897):523-528. PubMed ID: 35140398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring binding positions and backbone conformations of peptide ligands of proteins with a backbone-centred statistical energy function.
    Zhang L; Liu H
    J Comput Aided Mol Des; 2023 Oct; 37(10):463-478. PubMed ID: 37498491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteins of well-defined structures can be designed without backbone readjustment by a statistical model.
    Zhou X; Xiong P; Wang M; Ma R; Zhang J; Chen Q; Liu H
    J Struct Biol; 2016 Dec; 196(3):350-357. PubMed ID: 27522946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational design of a protein crystal.
    Lanci CJ; MacDermaid CM; Kang SG; Acharya R; North B; Yang X; Qiu XJ; DeGrado WF; Saven JG
    Proc Natl Acad Sci U S A; 2012 May; 109(19):7304-9. PubMed ID: 22538812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo backbone scaffolds for protein design.
    MacDonald JT; Maksimiak K; Sadowski MI; Taylor WR
    Proteins; 2010 Apr; 78(5):1311-25. PubMed ID: 20017215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural network-derived Potts models for structure-based protein design using backbone atomic coordinates and tertiary motifs.
    Li AJ; Lu M; Desta I; Sundar V; Grigoryan G; Keating AE
    Protein Sci; 2023 Feb; 32(2):e4554. PubMed ID: 36564857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building alternate protein structures using the elastic network model.
    Yang Q; Sharp KA
    Proteins; 2009 Feb; 74(3):682-700. PubMed ID: 18704927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TetraBASE: A Side Chain-Independent Statistical Energy for Designing Realistically Packed Protein Backbones.
    Chu H; Liu H
    J Chem Inf Model; 2018 Feb; 58(2):430-442. PubMed ID: 29314837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting residue-specific qualities of individual protein models using residual neural networks and graph neural networks.
    Zhao C; Liu T; Wang Z
    Proteins; 2022 Dec; 90(12):2091-2102. PubMed ID: 35842895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete restraint-based protein modeling and the Calpha-trace problem.
    DePristo MA; De Bakker PI; Shetty RP; Blundell TL
    Protein Sci; 2003 Sep; 12(9):2032-46. PubMed ID: 12931001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of van der Waals energy for protein side-chain placement and design.
    Fahmy A; Wagner G
    Biophys J; 2011 Oct; 101(7):1690-8. PubMed ID: 21961595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic modeling of protein backbones in electron-density maps via prediction of Calpha coordinates.
    Ioerger TR; Sacchettini JC
    Acta Crystallogr D Biol Crystallogr; 2002 Dec; 58(Pt 12):2043-54. PubMed ID: 12454463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational protein design with backbone plasticity.
    MacDonald JT; Freemont PS
    Biochem Soc Trans; 2016 Oct; 44(5):1523-1529. PubMed ID: 27911735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR hawk-eyed view of AlphaFold2 structures.
    Zweckstetter M
    Protein Sci; 2021 Nov; 30(11):2333-2337. PubMed ID: 34469019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid modifications for conformationally constraining naturally occurring and engineered peptide backbones: Insights from the Protein Data Bank.
    Di Costanzo L; Dutta S; Burley SK
    Biopolymers; 2018 Aug; 109(10):e23230. PubMed ID: 30368772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of comparative modeling in CASP2.
    Martin AC; MacArthur MW; Thornton JM
    Proteins; 1997; Suppl 1():14-28. PubMed ID: 9485491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic Reconstruction of Cyclic Peptides and Protein Backbones from Partial Data.
    Hassan M; Coutsias EA
    J Chem Inf Model; 2021 Oct; 61(10):4975-5000. PubMed ID: 34570494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple and versatile restraints for the accurate modeling of alpha-helical coiled-coil structures of multiple strandedness, orientation and composition.
    Charest G; Lavigne P
    Biopolymers; 2006 Feb; 81(3):202-14. PubMed ID: 16245262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.