These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38325631)

  • 1. Chronic aquatic toxicity assessment of diverse chemicals on Daphnia magna using QSAR and chemical read-across.
    Kumar A; Kumar V; Ojha PK; Roy K
    Regul Toxicol Pharmacol; 2024 Mar; 148():105572. PubMed ID: 38325631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing random forest based QSAR models for predicting the mixture toxicity of TiO
    Trinh TX; Seo M; Yoon TH; Kim J
    NanoImpact; 2022 Jan; 25():100383. PubMed ID: 35559889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR study using acute toxicity of Daphnia magna and Hyalella azteca through exposure to polycyclic aromatic hydrocarbons (PAHs).
    Ha H; Park K; Kang G; Lee S
    Ecotoxicology; 2019 Apr; 28(3):333-342. PubMed ID: 30790110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of acute toxicity to
    Wu X; Guo J; Dang G; Sui X; Zhang Q
    SAR QSAR Environ Res; 2022 Aug; 33(8):583-600. PubMed ID: 35862554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecotoxicological QSAR modelling of the acute toxicity of fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) against two aquatic organisms: Consensus modelling and comparison with ECOSAR.
    Li F; Sun G; Fan T; Zhang N; Zhao L; Zhong R; Peng Y
    Aquat Toxicol; 2023 Feb; 255():106393. PubMed ID: 36621240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds.
    Khan K; Benfenati E; Roy K
    Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM
    Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of modes of action of pesticides to Daphnia magna based on QSAR, excess toxicity and critical body residues.
    Wang J; Yang Y; Huang Y; Zhang X; Huang Y; Qin WC; Wen Y; Zhao YH
    Ecotoxicol Environ Saf; 2020 Oct; 203():111046. PubMed ID: 32888614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of classification models for predicting chronic toxicity of chemicals to Daphnia magna and Pseudokirchneriella subcapitata.
    Ding F; Wang Z; Yang X; Shi L; Liu J; Chen G
    SAR QSAR Environ Res; 2019 Jan; 30(1):39-50. PubMed ID: 30477347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR modelling of organic dyes for their acute toxicity in Daphnia magna using 2D-descriptors.
    Jillella GK; Roy K
    SAR QSAR Environ Res; 2022 Feb; 33(2):111-139. PubMed ID: 35156472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecotoxicity and QSAR studies of glycerol ethers in Daphnia magna.
    Perales E; García JI; Pires E; Aldea L; Lomba L; Giner B
    Chemosphere; 2017 Sep; 183():277-285. PubMed ID: 28551204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of seven in silico tools for evaluating of daphnia and fish acute toxicity: case study on Chinese Priority Controlled Chemicals and new chemicals.
    Zhou L; Fan D; Yin W; Gu W; Wang Z; Liu J; Xu Y; Shi L; Liu M; Ji G
    BMC Bioinformatics; 2021 Mar; 22(1):151. PubMed ID: 33761866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting anionic surfactant toxicity to Daphnia magna in aquatic environment: a green approach for evaluation of EC
    Salmani MH; Garzegar S; Ehrampoush MH; Askarishahi M
    Environ Sci Pollut Res Int; 2021 Sep; 28(36):50731-50746. PubMed ID: 33973114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling of aquatic toxicity of polychlorinated naphthalenes (PCNs) employing 2D-QSAR and chemical read-across.
    Nath A; Ojha PK; Roy K
    Aquat Toxicol; 2023 Apr; 257():106429. PubMed ID: 36842883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing in vivo data and in silico predictions for acute effects assessment of biocidal active substances and metabolites for aquatic organisms.
    Blázquez M; Andreu-Sánchez O; Ranero I; Fernández-Cruz ML; Benfenati E
    Ecotoxicol Environ Saf; 2020 Dec; 205():111291. PubMed ID: 32956865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. External validation of acute-to-chronic models for estimation of reproductive toxicity to Daphnia magna.
    Furuhama A; Hayashi TI; Yamamoto H; Tatarazako N
    SAR QSAR Environ Res; 2017 Sep; 28(9):765-781. PubMed ID: 29022371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemometric modeling of Daphnia magna toxicity of agrochemicals.
    Khan PM; Roy K; Benfenati E
    Chemosphere; 2019 Jun; 224():470-479. PubMed ID: 30831498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global classification models for predicting acute toxicity of chemicals towards Daphnia magna.
    Yu X
    Environ Res; 2023 Dec; 238(Pt 2):117239. PubMed ID: 37778597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aquatic toxicity (Pre)screening strategy for structurally diverse chemicals: global or local classification tree models?
    Gajewicz-Skretna A; Gromelski M; Wyrzykowska E; Furuhama A; Yamamoto H; Suzuki N
    Ecotoxicol Environ Saf; 2021 Jan; 208():111738. PubMed ID: 33396066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.