These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38327643)

  • 1. Deciphering the Unconventional Reduction of C=N Bonds by Old Yellow Enzymes Using QM/MM.
    Sahrawat AS; Polidori N; Kroutil W; Gruber K
    ACS Catal; 2024 Feb; 14(3):1257-1266. PubMed ID: 38327643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of α,β-Unsaturated Ketones by Old Yellow Enzymes: Mechanistic Insights from Quantum Mechanics/Molecular Mechanics Calculations.
    Lonsdale R; Reetz MT
    J Am Chem Soc; 2015 Nov; 137(46):14733-42. PubMed ID: 26521678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amine oxidation mediated by lysine-specific demethylase 1: quantum mechanics/molecular mechanics insights into mechanism and role of lysine 661.
    Karasulu B; Patil M; Thiel W
    J Am Chem Soc; 2013 Sep; 135(36):13400-13. PubMed ID: 23988016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetically most likely substrate and active-site protonation sites and pathways in the catalytic mechanism of dihydrofolate reductase.
    Cummins PL; Gready JE
    J Am Chem Soc; 2001 Apr; 123(15):3418-28. PubMed ID: 11472112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QM/MM and SCRF studies of the ionization state of 8-methylpterin substrate bound to dihydrofolate reductase: existence of a low-barrier hydrogen bond.
    Cummins PL; Gready JE
    J Mol Graph Model; 2000 Feb; 18(1):42-9. PubMed ID: 10935206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant S. cerevisiae expressing Old Yellow Enzymes from non-conventional yeasts: an easy system for selective reduction of activated alkenes.
    Romano D; Contente ML; Molinari F; Eberini I; Ruvutuso E; Sensi C; Amaretti A; Rossi M; Raimondi S
    Microb Cell Fact; 2014 Apr; 13():60. PubMed ID: 24767246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5'-methyl phosphate, with in situ generated [CpRh(Bpy)H](+): structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives.
    Lo HC; Leiva C; Buriez O; Kerr JB; Olmstead MM; Fish RH
    Inorg Chem; 2001 Dec; 40(26):6705-16. PubMed ID: 11735482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reaction mechanism of sarcosine oxidase elucidated using FMO and QM/MM methods.
    Abe Y; Shoji M; Nishiya Y; Aiba H; Kishimoto T; Kitaura K
    Phys Chem Chem Phys; 2017 Apr; 19(15):9811-9822. PubMed ID: 28374027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational modeling of the direct hydride transfer mechanism for the MAO catalyzed oxidation of phenethylamine and benzylamine: ONIOM (QM/QM) calculations.
    Akyüz MA; Erdem SS
    J Neural Transm (Vienna); 2013 Jun; 120(6):937-45. PubMed ID: 23619993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MD and QM/MM studies on long-chain L-α-hydroxy acid oxidase: substrate binding features and oxidation mechanism.
    Cao Y; Han S; Yu L; Qian H; Chen JZ
    J Phys Chem B; 2014 May; 118(20):5406-17. PubMed ID: 24801764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric Reductive Carbocyclization Using Engineered Ene Reductases.
    Heckenbichler K; Schweiger A; Brandner LA; Binter A; Toplak M; Macheroux P; Gruber K; Breinbauer R
    Angew Chem Int Ed Engl; 2018 Jun; 57(24):7240-7244. PubMed ID: 29689601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbinolamine formation and dehydration in a DNA repair enzyme active site.
    Dodson ML; Walker RC; Lloyd RS
    PLoS One; 2012; 7(2):e31377. PubMed ID: 22384015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular oxygen activation and proton transfer mechanisms in lanosterol 14alpha-demethylase catalysis.
    Sen K; Hackett JC
    J Phys Chem B; 2009 Jun; 113(23):8170-82. PubMed ID: 19438188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton transfer in the oxidative half-reaction of pentaerythritol tetranitrate reductase. Structure of the reduced enzyme-progesterone complex and the roles of residues Tyr186, His181, His184.
    Khan H; Barna T; Bruce NC; Munro AW; Leys D; Scrutton NS
    FEBS J; 2005 Sep; 272(18):4660-71. PubMed ID: 16156787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selectivity through discriminatory induced fit enables switching of NAD(P)H coenzyme specificity in Old Yellow Enzyme ene-reductases.
    Iorgu AI; Hedison TM; Hay S; Scrutton NS
    FEBS J; 2019 Aug; 286(16):3117-3128. PubMed ID: 31033202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular modeling of the reaction pathway and hydride transfer reactions of HMG-CoA reductase.
    Haines BE; Steussy CN; Stauffacher CV; Wiest O
    Biochemistry; 2012 Oct; 51(40):7983-95. PubMed ID: 22971202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations.
    Monari A; Rivail JL; Assfeld X
    Acc Chem Res; 2013 Feb; 46(2):596-603. PubMed ID: 23249409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Kumar VP; Thomas LM; Bobyk KD; Andi B; Cook PF; West AH
    Biochemistry; 2012 Jan; 51(4):857-66. PubMed ID: 22243403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic Mechanism of Amyloid-β Peptide Degradation by Insulin Degrading Enzyme: Insights from Quantum Mechanics and Molecular Mechanics Style Møller-Plesset Second Order Perturbation Theory Calculation.
    Lai R; Tang WJ; Li H
    J Chem Inf Model; 2018 Sep; 58(9):1926-1934. PubMed ID: 30133282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.