BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 38328080)

  • 1. Aggregation of
    Ravichandran P; Parsana P; Keener R; Hansen KD; Battle A
    bioRxiv; 2024 Jan; ():. PubMed ID: 38328080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demographic confounders distort inference of gene regulatory and gene co-expression networks in cancer.
    Ketteler A; Blumenthal DB
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37985453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Performance Comparison of Gene Co-expression Networks of Breast and Prostate Cancer using Different Selection Criteria.
    Cingiz MÖ; Biricik G; Diri B
    Interdiscip Sci; 2021 Sep; 13(3):500-510. PubMed ID: 34003445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centralization Within Sub-Experiments Enhances the Biological Relevance of Gene Co-expression Networks: A Plant Mitochondrial Case Study.
    Law SR; Kellgren TG; Björk R; Ryden P; Keech O
    Front Plant Sci; 2020; 11():524. PubMed ID: 32582224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network aggregation improves gene function prediction of grapevine gene co-expression networks.
    Wong DCJ
    Plant Mol Biol; 2020 Jul; 103(4-5):425-441. PubMed ID: 32266646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregated gene co-expression networks predict transcription factor regulatory landscapes in grapevine.
    Orduña L; Santiago A; Navarro-Payá D; Zhang C; Wong DCJ; Matus JT
    J Exp Bot; 2023 Nov; 74(21):6522-6540. PubMed ID: 37668374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Annotation of gene function in citrus using gene expression information and co-expression networks.
    Wong DC; Sweetman C; Ford CM
    BMC Plant Biol; 2014 Jul; 14():186. PubMed ID: 25023870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network.
    Lyu Y; Xue L; Zhang F; Koch H; Saba L; Kechris K; Li Q
    PLoS Comput Biol; 2018 Sep; 14(9):e1006436. PubMed ID: 30240439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction and Optimization of a Large Gene Coexpression Network in Maize Using RNA-Seq Data.
    Huang J; Vendramin S; Shi L; McGinnis KM
    Plant Physiol; 2017 Sep; 175(1):568-583. PubMed ID: 28768814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. recount3: summaries and queries for large-scale RNA-seq expression and splicing.
    Wilks C; Zheng SC; Chen FY; Charles R; Solomon B; Ling JP; Imada EL; Zhang D; Joseph L; Leek JT; Jaffe AE; Nellore A; Collado-Torres L; Hansen KD; Langmead B
    Genome Biol; 2021 Nov; 22(1):323. PubMed ID: 34844637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of Long Distance Co-Expression in Lung Cancer.
    Andonegui-Elguera SD; Zamora-Fuentes JM; Espinal-Enríquez J; Hernández-Lemus E
    Front Genet; 2021; 12():625741. PubMed ID: 33777098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks.
    Mao G; Pang Z; Zuo K; Wang Q; Pei X; Chen X; Liu J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37985457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VCNet: vector-based gene co-expression network construction and its application to RNA-seq data.
    Wang Z; Fang H; Tang NL; Deng M
    Bioinformatics; 2017 Jul; 33(14):2173-2181. PubMed ID: 28334366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene Differential Co-Expression Networks Based on RNA-Seq: Construction and Its Applications.
    Wang P; Wang D
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2829-2841. PubMed ID: 34383649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional networks inference from rule-based machine learning models.
    Lazzarini N; Widera P; Williamson S; Heer R; Krasnogor N; Bacardit J
    BioData Min; 2016; 9(1):28. PubMed ID: 27597880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sharing and Specificity of Co-expression Networks across 35 Human Tissues.
    Pierson E; ; Koller D; Battle A; Mostafavi S; Ardlie KG; Getz G; Wright FA; Kellis M; Volpi S; Dermitzakis ET
    PLoS Comput Biol; 2015 May; 11(5):e1004220. PubMed ID: 25970446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative analysis based on survival associated co-expression gene modules for predicting Neuroblastoma patients' survival time.
    Han Y; Ye X; Cheng J; Zhang S; Feng W; Han Z; Zhang J; Huang K
    Biol Direct; 2019 Feb; 14(1):4. PubMed ID: 30760313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-expression Networks in Predicting Transcriptional Gene Regulation.
    AbuQamar SF; El-Tarabily KA; Sham A
    Methods Mol Biol; 2021; 2328():1-11. PubMed ID: 34251616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.