These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38328112)

  • 1. scaDA: A Novel Statistical Method for Differential Analysis of Single-Cell Chromatin Accessibility Sequencing Data.
    Zhao F; Ma X; Yao B; Chen L
    bioRxiv; 2024 Jan; ():. PubMed ID: 38328112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scaDA: A novel statistical method for differential analysis of single-cell chromatin accessibility sequencing data.
    Zhao F; Ma X; Yao B; Lu Q; Chen L
    PLoS Comput Biol; 2024 Aug; 20(8):e1011854. PubMed ID: 39093856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder.
    Wang Z; Zhang Y; Yu Y; Zhang J; Liu Y; Zou Q
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation.
    Baek S; Lee I
    Comput Struct Biotechnol J; 2020; 18():1429-1439. PubMed ID: 32637041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads.
    De Rop FV; Ismail JN; Bravo González-Blas C; Hulselmans GJ; Flerin CC; Janssens J; Theunis K; Christiaens VM; Wouters J; Marcassa G; de Wit J; Poovathingal S; Aerts S
    Elife; 2022 Feb; 11():. PubMed ID: 35195064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating network diffusion and peak location information for better single-cell ATAC-seq data analysis.
    Yu J; Leng J; Hou Z; Sun D; Wu LY
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38493346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Destin: toolkit for single-cell analysis of chromatin accessibility.
    Urrutia E; Chen L; Zhou H; Jiang Y
    Bioinformatics; 2019 Oct; 35(19):3818-3820. PubMed ID: 30821321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the chromatin accessibility in an Alzheimer's disease (AD) mouse model.
    Wang Y; Zhang X; Song Q; Hou Y; Liu J; Sun Y; Wang P
    Alzheimers Res Ther; 2020 Mar; 12(1):29. PubMed ID: 32293531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell insights: pioneering an integrated atlas of chromatin accessibility and transcriptomic landscapes in diabetic cardiomyopathy.
    Su Q; Huang W; Huang Y; Dai R; Chang C; Li QY; Liu H; Li Z; Zhao Y; Wu Q; Pan DG
    Cardiovasc Diabetol; 2024 Apr; 23(1):139. PubMed ID: 38664790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. simATAC: a single-cell ATAC-seq simulation framework.
    Navidi Z; Zhang L; Wang B
    Genome Biol; 2021 Mar; 22(1):74. PubMed ID: 33663563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamental and practical approaches for single-cell ATAC-seq analysis.
    Shi P; Nie Y; Yang J; Zhang W; Tang Z; Xu J
    aBIOTECH; 2022 Sep; 3(3):212-223. PubMed ID: 36313930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Single-Cell Assay for Transposase-Accessible Chromatin with High Throughput Sequencing in Plant Science: Advances, Technical Challenges, and Prospects.
    Lu C; Wei Y; Abbas M; Agula H; Wang E; Meng Z; Zhang R
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scBasset: sequence-based modeling of single-cell ATAC-seq using convolutional neural networks.
    Yuan H; Kelley DR
    Nat Methods; 2022 Sep; 19(9):1088-1096. PubMed ID: 35941239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATAC-seq normalization method can significantly affect differential accessibility analysis and interpretation.
    Reske JJ; Wilson MR; Chandler RL
    Epigenetics Chromatin; 2020 Apr; 13(1):22. PubMed ID: 32321567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scATACpipe: A nextflow pipeline for comprehensive and reproducible analyses of single cell ATAC-seq data.
    Hu K; Liu H; Lawson ND; Zhu LJ
    Front Cell Dev Biol; 2022; 10():981859. PubMed ID: 36238687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identify Regulatory eQTLs by Multiome Sequencing in Prostate Single Cells.
    Tian Y; Wu L; Huang CC; Wang L
    bioRxiv; 2024 Jun; ():. PubMed ID: 38948854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scBlood: A comprehensive single-cell accessible chromatin database of blood cells.
    Zhao Y; Yu ZM; Cui T; Li LD; Li YY; Qian FC; Zhou LW; Li Y; Fang QL; Huang XM; Zhang QY; Cai FH; Dong FJ; Shang DS; Li CQ; Wang QY
    Comput Struct Biotechnol J; 2024 Dec; 23():2746-2753. PubMed ID: 39050785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved quality metrics for association and reproducibility in chromatin accessibility data using mutual information.
    Roth C; Venu V; Job V; Lubbers N; Sanbonmatsu KY; Steadman CR; Starkenburg SR
    BMC Bioinformatics; 2023 Nov; 24(1):441. PubMed ID: 37990143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation.
    Henikoff S; Henikoff JG; Kaya-Okur HS; Ahmad K
    Elife; 2020 Nov; 9():. PubMed ID: 33191916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen.
    Li Z; Kuppe C; Ziegler S; Cheng M; Kabgani N; Menzel S; Zenke M; Kramann R; Costa IG
    Nat Commun; 2021 Nov; 12(1):6386. PubMed ID: 34737275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.