BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38328120)

  • 1. Transcranial Focused Ultrasound Remotely Modulates Extrastriate Visual Cortex with Subregion Specificity.
    Yu K; Schmitt S; Ni Y; Crane EC; Smith MA; He B
    bioRxiv; 2024 Jan; ():. PubMed ID: 38328120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcranial ultrasound neuromodulation induces neuronal correlation change in the rat somatosensory cortex.
    Ramachandran S; Niu X; Yu K; He B
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35947970
    [No Abstract]   [Full Text] [Related]  

  • 3. Transcranial Focused Ultrasound to the Right Prefrontal Cortex Improves Mood and Alters Functional Connectivity in Humans.
    Sanguinetti JL; Hameroff S; Smith EE; Sato T; Daft CMW; Tyler WJ; Allen JJB
    Front Hum Neurosci; 2020; 14():52. PubMed ID: 32184714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of subject-specific helmets for the study of human visuomotor behavior using transcranial focused ultrasound: a pilot study.
    Park TY; Jeong JH; Chung YA; Yeo SH; Kim H
    Comput Methods Programs Biomed; 2022 Nov; 226():107127. PubMed ID: 36126434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcranial focused ultrasound induces sustained synaptic plasticity in rat hippocampus.
    Niu X; Yu K; He B
    Brain Stimul; 2022; 15(2):352-359. PubMed ID: 35104664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcranial focused ultrasound selectively increases perfusion and modulates functional connectivity of deep brain regions in humans.
    Kuhn T; Spivak NM; Dang BH; Becerra S; Halavi SE; Rotstein N; Rosenberg BM; Hiller S; Swenson A; Cvijanovic L; Dang N; Sun M; Kronemyer D; Berlow R; Revett MR; Suthana N; Monti MM; Bookheimer S
    Front Neural Circuits; 2023; 17():1120410. PubMed ID: 37091318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromodulation Using Transcranial Focused Ultrasound on the Bilateral Medial Prefrontal Cortex.
    Kim YG; Kim SE; Lee J; Hwang S; Yoo SS; Lee HW
    J Clin Med; 2022 Jun; 11(13):. PubMed ID: 35807094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical and experimental evaluation of low-intensity transcranial focused ultrasound wave propagation using human skulls for brain neuromodulation.
    Chen M; Peng C; Wu H; Huang CC; Kim T; Traylor Z; Muller M; Chhatbar PY; Nam CS; Feng W; Jiang X
    Med Phys; 2023 Jan; 50(1):38-49. PubMed ID: 36342303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Neuromodulatory Pathways of the
    Niu X; Yu K; He B
    Curr Opin Biomed Eng; 2018 Dec; 8():61-69. PubMed ID: 31223668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromodulation with single-element transcranial focused ultrasound in human thalamus.
    Legon W; Ai L; Bansal P; Mueller JK
    Hum Brain Mapp; 2018 May; 39(5):1995-2006. PubMed ID: 29380485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal responses to focused ultrasound are gated by pre-stimulation brain rhythms.
    Nguyen DT; Berisha DE; Konofagou EE; Dmochowski JP
    Brain Stimul; 2022; 15(1):233-243. PubMed ID: 34990877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcranial Focused Ultrasound Neuromodulation of Voluntary Movement-Related Cortical Activity in Humans.
    Yu K; Liu C; Niu X; He B
    IEEE Trans Biomed Eng; 2021 Jun; 68(6):1923-1931. PubMed ID: 33055021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive suppression of the human nucleus accumbens (NAc) with transcranial focused ultrasound (tFUS) modulates the reward network: a pilot study.
    Peng X; Connolly DJ; Sutton F; Robinson J; Baker-Vogel B; Short EB; Badran BW
    Front Hum Neurosci; 2024; 18():1359396. PubMed ID: 38628972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weak Ultrasound Contributes to Neuromodulatory Effects in the Rat Motor Cortex.
    Chu PC; Huang CS; Chang PK; Chen RS; Chen KT; Hsieh TH; Liu HL
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological Source Imaging of Brain Networks Perturbed by Low-Intensity Transcranial Focused Ultrasound.
    Yu K; Sohrabpour A; He B
    IEEE Trans Biomed Eng; 2016 Sep; 63(9):1787-1794. PubMed ID: 27448335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of transcranial focused ultrasound on human primary motor cortex using 7T fMRI: a pilot study.
    Ai L; Bansal P; Mueller JK; Legon W
    BMC Neurosci; 2018 Sep; 19(1):56. PubMed ID: 30217150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcranial focused ultrasound to the posterior cingulate cortex modulates default mode network and subjective experience: an fMRI pilot study.
    Lord B; Sanguinetti JL; Ruiz L; Miskovic V; Segre J; Young S; Fini ME; Allen JJB
    Front Hum Neurosci; 2024; 18():1392199. PubMed ID: 38895168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcranial Focused Ultrasound Modulates Electrical Behavior of the Neurons: Design and Implementation of a Model.
    F B; B M; R S; H G
    J Biomed Phys Eng; 2020 Feb; 10(1):65-74. PubMed ID: 32158713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Low-Intensity Transcranial Focused Ultrasound Parameter Exploration Study of the Ventral Capsule/Ventral Striatum.
    Chou T; Kochanowski BJ; Hayden A; Borron BM; Barbeiro MC; Xu J; Kim JW; Zhang X; Bouchard RR; Phan KL; Goodman WK; Dougherty DD
    Neuromodulation; 2024 Apr; ():. PubMed ID: 38691076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of functional neuromodulation in humans using low-intensity transcranial focused ultrasound.
    Lee K; Park TY; Lee W; Kim H
    Biomed Eng Lett; 2024 May; 14(3):407-438. PubMed ID: 38645585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.