BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38328197)

  • 1. Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications.
    Ctortecka C; Clark NM; Boyle B; Seth A; Mani DR; Udeshi ND; Carr SA
    bioRxiv; 2024 Jan; ():. PubMed ID: 38328197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Automated Nanowell-Array Workflow for Quantitative Multiplexed Single-Cell Proteomics Sample Preparation at High Sensitivity.
    Ctortecka C; Hartlmayr D; Seth A; Mendjan S; Tourniaire G; Udeshi ND; Carr SA; Mechtler K
    Mol Cell Proteomics; 2023 Dec; 22(12):100665. PubMed ID: 37839701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Automated and Fast Sample Preparation Workflow for Laser Microdissection Guided Ultrasensitive Proteomics.
    Makhmut A; Qin D; Hartlmayr D; Seth A; Coscia F
    Mol Cell Proteomics; 2024 May; 23(5):100750. PubMed ID: 38513891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Advances in high-throughput proteomic analysis].
    Wu Q; Sui X; Tian R
    Se Pu; 2021 Feb; 39(2):112-117. PubMed ID: 34227342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-Free Sample Preparation for Single-Cell Proteomics.
    Hartlmayr D; Ctortecka C; Mayer R; Mechtler K; Seth A
    Methods Mol Biol; 2024; 2817():1-7. PubMed ID: 38907142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.
    Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R
    J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zwitter-ionic monolith-based spintip column coupled with Evosep One liquid chromatography for high-throughput proteomic analysis.
    Su Y; Wang X; Yang Y; Yang L; Xu R; Tian R
    J Chromatogr A; 2022 Jul; 1675():463122. PubMed ID: 35623190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evosep One Enables Robust Deep Proteome Coverage Using Tandem Mass Tags while Significantly Reducing Instrument Time.
    Krieger JR; Wybenga-Groot LE; Tong J; Bache N; Tsao MS; Moran MF
    J Proteome Res; 2019 May; 18(5):2346-2353. PubMed ID: 30938160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Recent progress in capillary electrophoresis-based high-sensitivity proteomics].
    Yang Y; Tian R
    Se Pu; 2020 Oct; 38(10):1125-1132. PubMed ID: 34213109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast and Reproducible Proteomics from Small Amounts of Heart Tissue Enabled by Azo and timsTOF Pro.
    Aballo TJ; Roberts DS; Melby JA; Buck KM; Brown KA; Ge Y
    J Proteome Res; 2021 Aug; 20(8):4203-4211. PubMed ID: 34236868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Easy and Accessible Workflow for Label-Free Single-Cell Proteomics.
    Sanchez-Avila X; Truong T; Xie X; Webber KGI; Johnston SM; Lin HL; Axtell NB; Puig-Sanvicens V; Kelly RT
    J Am Soc Mass Spectrom; 2023 Oct; 34(10):2374-2380. PubMed ID: 37594399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AutoProteome Chip System for Fully Automated and Integrated Proteomics Sample Preparation and Peptide Fractionation.
    Lu X; Wang Z; Gao Y; Chen W; Wang L; Huang P; Gao W; Ke M; He A; Tian R
    Anal Chem; 2020 Jul; 92(13):8893-8900. PubMed ID: 32490667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automation of single-cell proteomic sample preparation.
    Alexovič M; Sabo J; Longuespée R
    Proteomics; 2021 Dec; 21(23-24):e2100198. PubMed ID: 34570421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully Automated Workflow for Integrated Sample Digestion and Evotip Loading Enabling High-Throughput Clinical Proteomics.
    Kverneland AH; Harking F; Vej-Nielsen JM; Huusfeldt M; Bekker-Jensen DB; Svane IM; Bache N; Olsen JV
    Mol Cell Proteomics; 2024 May; 23(7):100790. PubMed ID: 38777088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated proteomic sample preparation with combination of on-line high-abundance protein depletion, denaturation, reduction, desalting and digestion to achieve high throughput plasma proteome quantification.
    Li Y; Yuan H; Dai Z; Zhang W; Zhang X; Zhao B; Liang Z; Zhang L; Zhang Y
    Anal Chim Acta; 2021 Apr; 1154():338343. PubMed ID: 33736814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive, High-Throughput HLA-I and HLA-II Immunopeptidomics Using Parallel Accumulation-Serial Fragmentation Mass Spectrometry.
    Phulphagar KM; Ctortecka C; Jacome ASV; Klaeger S; Verzani EK; Hernandez GM; Udeshi ND; Clauser KR; Abelin JG; Carr SA
    Mol Cell Proteomics; 2023 Jun; 22(6):100563. PubMed ID: 37142057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and In-Depth Coverage of the (Phospho-)Proteome With Deep Libraries and Optimal Window Design for dia-PASEF.
    Skowronek P; Thielert M; Voytik E; Tanzer MC; Hansen FM; Willems S; Karayel O; Brunner AD; Meier F; Mann M
    Mol Cell Proteomics; 2022 Sep; 21(9):100279. PubMed ID: 35944843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts.
    Demichev V; Szyrwiel L; Yu F; Teo GC; Rosenberger G; Niewienda A; Ludwig D; Decker J; Kaspar-Schoenefeld S; Lilley KS; Mülleder M; Nesvizhskii AI; Ralser M
    Nat Commun; 2022 Jul; 13(1):3944. PubMed ID: 35803928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Coupling of Nanodroplet Sample Preparation with Liquid Chromatography-Mass Spectrometry for High-Throughput Single-Cell Proteomics.
    Williams SM; Liyu AV; Tsai CF; Moore RJ; Orton DJ; Chrisler WB; Gaffrey MJ; Liu T; Smith RD; Kelly RT; Pasa-Tolic L; Zhu Y
    Anal Chem; 2020 Aug; 92(15):10588-10596. PubMed ID: 32639140
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.