BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38328235)

  • 21. A novel microwave stimulus remote-controlled anticancer drug release system based on Janus TiO
    Liu Y; Si Y; Di M; Tang D; Meng L; Cui B
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111968. PubMed ID: 33812596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional, symmetrically assembled microfluidic device for lipid nanoparticle production.
    Kimura N; Maeki M; Sasaki K; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M
    RSC Adv; 2021 Jan; 11(3):1430-1439. PubMed ID: 35424092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of amino acid-modified biodegradable lipid nanoparticles for siRNA delivery.
    Patel P; Fetse J; Lin CY; Guo Y; Hasan MR; Nakhjiri M; Zhao Z; Jain A; Cheng K
    Acta Biomater; 2022 Dec; 154():374-384. PubMed ID: 36191773
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemistry of Lipid Nanoparticles for RNA Delivery.
    Eygeris Y; Gupta M; Kim J; Sahay G
    Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery.
    Cheng X; Lee RJ
    Adv Drug Deliv Rev; 2016 Apr; 99(Pt A):129-137. PubMed ID: 26900977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loquat-Inspired Janus Drug Delivery System for Flexible and Robust Tumor Targeting Therapy.
    Liu Y; Wei C; Huang L; Liu W; Lin J; Chen L; Yang Y; Hu P; Liu A; Wang X
    ACS Biomater Sci Eng; 2019 Feb; 5(2):740-747. PubMed ID: 33405835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlled Self-Assembly of DNA-Mimicking Nanotubes to Form a Layer-by-Layer Scaffold for Homeostatic Tissue Constructs.
    Zhou L; Zhang W; Lee J; Kuhn L; Chen Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51321-51332. PubMed ID: 34663065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasound-Propelled Janus Rod-Shaped Micromotors for Site-Specific Sonodynamic Thrombolysis.
    Cao W; Liu Y; Ran P; He J; Xie S; Weng J; Li X
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58411-58421. PubMed ID: 34846117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications.
    Wang C; Zhang Y; Dong Y
    Acc Chem Res; 2021 Dec; 54(23):4283-4293. PubMed ID: 34793124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of
    Jung HN; Lee SY; Lee S; Youn H; Im HJ
    Theranostics; 2022; 12(17):7509-7531. PubMed ID: 36438494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A fluorinated ionizable lipid improves the mRNA delivery efficiency of lipid nanoparticles.
    Huo H; Cheng X; Xu J; Lin J; Chen N; Lu X
    J Mater Chem B; 2023 May; 11(19):4171-4180. PubMed ID: 37129135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells.
    Khare P; Dave KM; Kamte YS; Manoharan MA; O'Donnell LA; Manickam DS
    AAPS J; 2021 Dec; 24(1):8. PubMed ID: 34873640
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering Lipid Nanoparticles for Enhanced Intracellular Delivery of mRNA through Inhalation.
    Kim J; Jozic A; Lin Y; Eygeris Y; Bloom E; Tan X; Acosta C; MacDonald KD; Welsher KD; Sahay G
    ACS Nano; 2022 Sep; 16(9):14792-14806. PubMed ID: 36038136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement.
    Tenchov R; Bird R; Curtze AE; Zhou Q
    ACS Nano; 2021 Nov; 15(11):16982-17015. PubMed ID: 34181394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles.
    Sebastiani F; Yanez Arteta M; Lerche M; Porcar L; Lang C; Bragg RA; Elmore CS; Krishnamurthy VR; Russell RA; Darwish T; Pichler H; Waldie S; Moulin M; Haertlein M; Forsyth VT; Lindfors L; Cárdenas M
    ACS Nano; 2021 Apr; 15(4):6709-6722. PubMed ID: 33754708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery.
    He Z; Hu Y; Nie T; Tang H; Zhu J; Chen K; Liu L; Leong KW; Chen Y; Mao HQ
    Acta Biomater; 2018 Nov; 81():195-207. PubMed ID: 30267888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Dynamics Simulations of the Rotational and Translational Diffusion of a Janus Rod-Shaped Nanoparticle.
    Kharazmi A; Priezjev NV
    J Phys Chem B; 2017 Jul; 121(29):7133-7139. PubMed ID: 28714312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. S-nitrosothiols loaded mini-sized Au@silica nanorod elicits collagen depletion and mitochondrial damage in solid tumor treatment.
    Liu P; Wang Y; Liu Y; Tan F; Li J; Li N
    Theranostics; 2020; 10(15):6774-6789. PubMed ID: 32550903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hair follicle targeting with curcumin nanocrystals: Influence of the formulation properties on the penetration efficacy.
    Pelikh O; Eckert RW; Pinnapireddy SR; Keck CM
    J Control Release; 2021 Jan; 329():598-613. PubMed ID: 33011240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating how cationic lipid affects mRNA-LNP physical properties and biodistribution.
    Guéguen C; Ben Chimol T; Briand M; Renaud K; Seiler M; Ziesel M; Erbacher P; Hellal M
    Eur J Pharm Biopharm; 2024 Feb; 195():114077. PubMed ID: 37579889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.