These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38328481)

  • 1. SpCas9-HF1 enhances accuracy of cell cycle-dependent genome editing by increasing HDR efficiency, and by reducing off-target effects and indel rates.
    Matsumoto D; Matsugi E; Kishi K; Inoue Y; Nigorikawa K; Nomura W
    Mol Ther Nucleic Acids; 2024 Mar; 35(1):102124. PubMed ID: 38328481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High fidelity CRISPR/Cas9 increases precise monoallelic and biallelic editing events in primordial germ cells.
    Idoko-Akoh A; Taylor L; Sang HM; McGrew MJ
    Sci Rep; 2018 Oct; 8(1):15126. PubMed ID: 30310080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cas9-Geminin and Cdt1-fused anti-CRISPR protein synergistically increase editing accuracy.
    Matsumoto D; Kishi K; Matsugi E; Inoue Y; Nigorikawa K; Nomura W
    FEBS Lett; 2023 Apr; 597(7):985-994. PubMed ID: 36905332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage.
    Kulcsár PI; Tálas A; Huszár K; Ligeti Z; Tóth E; Weinhardt N; Fodor E; Welker E
    Genome Biol; 2017 Oct; 18(1):190. PubMed ID: 28985763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
    Kleinstiver BP; Pattanayak V; Prew MS; Tsai SQ; Nguyen NT; Zheng Z; Joung JK
    Nature; 2016 Jan; 529(7587):490-5. PubMed ID: 26735016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cell cycle-dependent CRISPR-Cas9 activation system based on an anti-CRISPR protein shows improved genome editing accuracy.
    Matsumoto D; Tamamura H; Nomura W
    Commun Biol; 2020 Oct; 3(1):601. PubMed ID: 33097793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison and optimization of different CRISPR/Cas9 donor-adapting systems for gene editing.
    Ma BX; Yang S; Lyu M; Wang YR; Chang LY; Han YF; Wang JG; Guo Y; Xu K
    Yi Chuan; 2024 Jun; 46(6):466-477. PubMed ID: 38886150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases.
    Zhang D; Zhang H; Li T; Chen K; Qiu JL; Gao C
    Genome Biol; 2017 Oct; 18(1):191. PubMed ID: 29020979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optimized SpCas9 high-fidelity variant for direct protein delivery.
    Pedrazzoli E; Bianchi A; Umbach A; Amistadi S; Brusson M; Frati G; Ciciani M; Badowska KA; Arosio D; Miccio A; Cereseto A; Casini A
    Mol Ther; 2023 Jul; 31(7):2257-2265. PubMed ID: 36905119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting activity of high-fidelity CRISPR/Cas9 variants using a tRNA
    He X; Wang Y; Yang F; Wang B; Xie H; Gu L; Zhao T; Liu X; Zhang D; Ren Q; Liu X; Liu Y; Gao C; Gu F
    J Biol Chem; 2019 Jun; 294(23):9308-9315. PubMed ID: 31010827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the range of CRISPR/Cas9-directed genome editing in soybean.
    He R; Zhang P; Yan Y; Yu C; Jiang L; Zhu Y; Wang D
    aBIOTECH; 2022 Jun; 3(2):89-98. PubMed ID: 36312444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention.
    Zhang Q; Xing HL; Wang ZP; Zhang HY; Yang F; Wang XC; Chen QJ
    Plant Mol Biol; 2018 Mar; 96(4-5):445-456. PubMed ID: 29476306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 14. Deleting specific residues from the HNH linkers creates a CRISPR-SpCas9 variant with high fidelity and efficiency.
    Wang G; Wang C; Chu T; Wu X; Anderson CM; Huang D; Li J
    J Biotechnol; 2023 May; 368():42-52. PubMed ID: 37116617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems.
    Shams F; Bayat H; Mohammadian O; Mahboudi S; Vahidnezhad H; Soosanabadi M; Rahimpour A
    Bioimpacts; 2022; 12(4):371-391. PubMed ID: 35975201
    [No Abstract]   [Full Text] [Related]  

  • 16. Decorating chromatin for enhanced genome editing using CRISPR-Cas9.
    Chen E; Lin-Shiao E; Trinidad M; Saffari Doost M; Colognori D; Doudna JA
    Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2204259119. PubMed ID: 36459645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-depth assessment of the PAM compatibility and editing activities of Cas9 variants.
    Zhang W; Yin J; Zhang-Ding Z; Xin C; Liu M; Wang Y; Ai C; Hu J
    Nucleic Acids Res; 2021 Sep; 49(15):8785-8795. PubMed ID: 34133740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice.
    Xu W; Song W; Yang Y; Wu Y; Lv X; Yuan S; Liu Y; Yang J
    BMC Plant Biol; 2019 Nov; 19(1):511. PubMed ID: 31752697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae
    Naduthodi MIS; Mohanraju P; Südfeld C; D'Adamo S; Barbosa MJ; van der Oost J
    Biotechnol Biofuels; 2019; 12():66. PubMed ID: 30962821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy.
    Chen JS; Dagdas YS; Kleinstiver BP; Welch MM; Sousa AA; Harrington LB; Sternberg SH; Joung JK; Yildiz A; Doudna JA
    Nature; 2017 Oct; 550(7676):407-410. PubMed ID: 28931002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.