BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 3832881)

  • 1. Glucose, lactate, and ketone body utilization by human mammary carcinomas in vivo.
    Kallinowskil F; Davel S; Vaupell P; Baessler KH; Wagner K
    Adv Exp Med Biol; 1985; 191():763-73. PubMed ID: 3832881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ketone body, glucose, lactic acid, and amino acid utilization by tumors in vivo in fasted rats.
    Sauer LA; Dauchy RT
    Cancer Res; 1983 Aug; 43(8):3497-503. PubMed ID: 6861121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose uptake, lactate release, ketone body turnover, metabolic micromilieu, and pH distributions in human breast cancer xenografts in nude rats.
    Kallinowski F; Vaupel P; Runkel S; Berg G; Fortmeyer HP; Baessler KH; Wagner K; Mueller-Klieser W; Walenta S
    Cancer Res; 1988 Dec; 48(24 Pt 1):7264-72. PubMed ID: 3191497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo nutrient uptake by head and neck cancers.
    Richtsmeier WJ; Dauchy R; Sauer LA
    Cancer Res; 1987 Oct; 47(19):5230-3. PubMed ID: 3621209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rate of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats.
    Dahlquist G; Persson B
    Pediatr Res; 1976 Nov; 10(11):910-7. PubMed ID: 980550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats.
    Ruderman NB; Ross PS; Berger M; Goodman MN
    Biochem J; 1974 Jan; 138(1):1-10. PubMed ID: 4275704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose, lactate, and ketone body utilization by human gynecological tumors xenografted into rnu/rnu-rats.
    Kallinowski F; Schlenger K; Runkel S; Vaupel P; Baessler KH; Fortmeyer HP
    Strahlenther Onkol; 1989 Jul; 165(7):507-8. PubMed ID: 2749484
    [No Abstract]   [Full Text] [Related]  

  • 8. Ketone-body utilization by adult and suckling rat brain in vivo.
    Hawkins RA; Williamson DH; Krebs HA
    Biochem J; 1971 Mar; 122(1):13-8. PubMed ID: 5124783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The movement of ketone bodies, glucose, pyruvate and lactate between the blood and the brain of rats.
    Daniel PM; Love ER; Moorhouse SR; Pratt OE; Wilson P
    J Physiol; 1972 Feb; 221(1):22P-23P. PubMed ID: 5016985
    [No Abstract]   [Full Text] [Related]  

  • 10. Partial oxidation of leucine in skeletal muscle.
    Palmer TN; Gossain S; Sugden MC
    Biochem Mol Biol Int; 1993 Feb; 29(2):255-62. PubMed ID: 8495210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of rumen epithelial development on metabolic activities and ketogenesis by the tissue in vitro.
    Giesecke D; Beck U; Wiesmayr S; Stangassinger M
    Comp Biochem Physiol B; 1979; 62(4):459-63. PubMed ID: 318452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulmonary surfactant lipid synthesis from ketone bodies, lactate and glucose in newborn rats.
    Sheehan PM; Yeh YY
    Lipids; 1985 Dec; 20(12):835-41. PubMed ID: 3841576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A double-isotope method for the measurement of ketone-body turnover in the rat. Effect of L-alanine.
    Reed WD; Baab PJ; Hawkins RL; Ozand PT
    Biochem J; 1984 Apr; 219(1):15-24. PubMed ID: 6721850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of lactate removal by ketone bodies in rat liver. Evidence for a quantitatively important role of the plasma membrane lactate transporter in lactate metabolism.
    Metcalfe HK; Monson JP; Welch SG; Cohen RD
    J Clin Invest; 1986 Sep; 78(3):743-7. PubMed ID: 3745435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation by ketone bodies of the rate of fatty acid synthesis in mammary gland slices from lactating rats.
    Bartley JC
    Lipids; 1976 Oct; 11(10):774-7. PubMed ID: 994747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral utilization of glucose, ketone bodies and oxygen in starving infant rats and the effect of intrauterine growth retardation.
    Dahlquist G
    Acta Physiol Scand; 1976 Oct; 98(2):237-47. PubMed ID: 983734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of energy charge and redox state for hepatocyte gluconeogenesis of acutely uremic rats.
    Riegel W; Hörl WH
    Nephron; 1985; 40(2):206-12. PubMed ID: 4000349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fuel of respiration of rat kidney cortex.
    Weidemann MJ; Krebs HA
    Biochem J; 1969 Apr; 112(2):149-66. PubMed ID: 5805283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic fuels along the nephron: pathways and intracellular mechanisms of interaction.
    Guder WG; Wagner S; Wirthensohn G
    Kidney Int; 1986 Jan; 29(1):41-5. PubMed ID: 3515013
    [No Abstract]   [Full Text] [Related]  

  • 20. Fasting plasma levels of glucose, acetoacetate, D-beta-hydroxybutyrate, glycerol, and lactate in the baboon infant: correlation with cerebral uptake of substrates and oxygen.
    Levitsky LL; Fisher DE; Paton JB; Delannoy CW
    Pediatr Res; 1977 Apr; 11(4):298-302. PubMed ID: 403503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.