These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38328899)

  • 1. Learning how to find targets in the micro-world: the case of intermittent active Brownian particles.
    Caraglio M; Kaur H; Fiderer LJ; López-Incera A; Briegel HJ; Franosch T; Muñoz-Gil G
    Soft Matter; 2024 Feb; 20(9):2008-2016. PubMed ID: 38328899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement learning with artificial microswimmers.
    Muiños-Landin S; Fischer A; Holubec V; Cichos F
    Sci Robot; 2021 Mar; 6(52):. PubMed ID: 34043550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal navigation strategy of active Brownian particles in target-search problems.
    Zanovello L; Faccioli P; Franosch T; Caraglio M
    J Chem Phys; 2021 Aug; 155(8):084901. PubMed ID: 34470340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport coefficients in dense active Brownian particle systems: mode-coupling theory and simulation results.
    Reichert J; Granz LF; Voigtmann T
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):27. PubMed ID: 33704593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guidance of active particles at liquid-liquid interfaces near surfaces.
    Palacios LS; Katuri J; Pagonabarraga I; Sánchez S
    Soft Matter; 2019 Aug; 15(32):6581-6588. PubMed ID: 31365015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow Navigation by Smart Microswimmers via Reinforcement Learning.
    Colabrese S; Gustavsson K; Celani A; Biferale L
    Phys Rev Lett; 2017 Apr; 118(15):158004. PubMed ID: 28452499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental Aspects of Enzyme-Powered Micro- and Nanoswimmers.
    Patiño T; Arqué X; Mestre R; Palacios L; Sánchez S
    Acc Chem Res; 2018 Nov; 51(11):2662-2671. PubMed ID: 30346732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can the self-propulsion of anisotropic microswimmers be described by using forces and torques?
    ten Hagen B; Wittkowski R; Takagi D; Kümmel F; Bechinger C; Löwen H
    J Phys Condens Matter; 2015 May; 27(19):194110. PubMed ID: 25923010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Path planning of the viscoelastic micro biological particle to minimize path length and particle's deformation using genetic algorithm.
    Korayem MH; Shahali S; Rastegar Z; Far SK
    Phys Eng Sci Med; 2020 Sep; 43(3):903-914. PubMed ID: 32607782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal Navigation of Self-Propelled Colloids.
    Yang Y; Bevan MA
    ACS Nano; 2018 Nov; 12(11):10712-10724. PubMed ID: 30252442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steering undulatory micro-swimmers in a fluid flow through reinforcement learning.
    El Khiyati Z; Chesneaux R; Giraldi L; Bec J
    Eur Phys J E Soft Matter; 2023 Jun; 46(6):43. PubMed ID: 37306761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Brownian Motion with Orientation-Dependent Motility: Theory and Experiments.
    Sprenger AR; Fernandez-Rodriguez MA; Alvarez L; Isa L; Wittkowski R; Löwen H
    Langmuir; 2020 Jun; 36(25):7066-7073. PubMed ID: 31975603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Brownian particle in homogeneous media of different viscosities: numerical simulations.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Active Brownian Particles in Plasma.
    Arkar K; Vasiliev MM; Petrov OF; Kononov EA; Trukhachev FM
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33494544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active Brownian particles moving in a random Lorentz gas.
    Zeitz M; Wolff K; Stark H
    Eur Phys J E Soft Matter; 2017 Feb; 40(2):23. PubMed ID: 28236113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic resetting of active Brownian particles with Lorentz force.
    Abdoli I; Sharma A
    Soft Matter; 2021 Feb; 17(5):1307-1316. PubMed ID: 33313625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of polydispersity on the dynamics of active Brownian particles.
    Kumar S; Singh JP; Giri D; Mishra S
    Phys Rev E; 2021 Aug; 104(2-1):024601. PubMed ID: 34525623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergent collective behavior of active Brownian particles with visual perception.
    Negi RS; Winkler RG; Gompper G
    Soft Matter; 2022 Aug; 18(33):6167-6178. PubMed ID: 35916064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Physical Mechanism to Model Brownian Yet Non-Gaussian Diffusion: Theory and Application.
    Alban-Chacón FE; Lamilla-Rubio EA; Alvarez-Alvarado MS
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079190
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.