These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 38329015)

  • 21. Paleoproterozoic sterol biosynthesis and the rise of oxygen.
    Gold DA; Caron A; Fournier GP; Summons RE
    Nature; 2017 Mar; 543(7645):420-423. PubMed ID: 28264195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular basis for sterol transport by StART-like lipid transfer domains.
    Horenkamp FA; Valverde DP; Nunnari J; Reinisch KM
    EMBO J; 2018 Mar; 37(6):. PubMed ID: 29467216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overturning dogma: tolerance of insects to mixed-sterol diets is not universal.
    Behmer ST
    Curr Opin Insect Sci; 2017 Oct; 23():89-95. PubMed ID: 29129288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring sterol uptake, acetylation, and export in yeast.
    Choudhary V; Schneiter R
    Methods Mol Biol; 2009; 580():221-32. PubMed ID: 19784602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutations in the nucleotide-binding domain of putative sterol importers Aus1 and Pdr11 selectively affect utilization of exogenous sterol species in yeast.
    Papay M; Klein C; Hapala I; Petriskova L; Kuchler K; Valachovic M
    Yeast; 2020 Jan; 37(1):5-14. PubMed ID: 31830308
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel sterol 14alpha-demethylase/ferredoxin fusion protein (MCCYP51FX) from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily.
    Jackson CJ; Lamb DC; Marczylo TH; Warrilow AG; Manning NJ; Lowe DJ; Kelly DE; Kelly SL
    J Biol Chem; 2002 Dec; 277(49):46959-65. PubMed ID: 12235134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ABCA1-dependent sterol release: sterol molecule specificity and potential membrane domain for HDL biogenesis.
    Yamauchi Y; Yokoyama S; Chang TY
    J Lipid Res; 2016 Jan; 57(1):77-88. PubMed ID: 26497474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sterol biosynthesis via cycloartenol and other biochemical features related to photosynthetic phyla in the amoeba Naegleria lovaniensis and Naegleria gruberi.
    Raederstorff D; Rohmer M
    Eur J Biochem; 1987 Apr; 164(2):427-34. PubMed ID: 3569274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tritium suicide selection identifies proteins involved in the uptake and intracellular transport of sterols in Saccharomyces cerevisiae.
    Sullivan DP; Georgiev A; Menon AK
    Eukaryot Cell; 2009 Feb; 8(2):161-9. PubMed ID: 19060182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytoplasmic oxysterol-binding proteins: sterol sensors or transporters?
    Vihervaara T; Jansen M; Uronen RL; Ohsaki Y; Ikonen E; Olkkonen VM
    Chem Phys Lipids; 2011 Sep; 164(6):443-50. PubMed ID: 21419754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining Mutations That Inhibit Two Distinct Steps of the ATP Hydrolysis Cycle Restores Wild-Type Function in the Lipopolysaccharide Transporter and Shows that ATP Binding Triggers Transport.
    Simpson BW; Pahil KS; Owens TW; Lundstedt EA; Davis RM; Kahne D; Ruiz N
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of sterol-binding agent nystatin on wheat roots: the changes in membrane permeability, sterols and glycoceramides.
    Valitova JN; Minibayeva FV; Kotlova ER; Novikov AV; Shavarda AL; Murtazina LI; Ryzhkina IS
    Phytochemistry; 2011 Oct; 72(14-15):1751-9. PubMed ID: 21726881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation.
    Quon E; Sere YY; Chauhan N; Johansen J; Sullivan DP; Dittman JS; Rice WJ; Chan RB; Di Paolo G; Beh CT; Menon AK
    PLoS Biol; 2018 May; 16(5):e2003864. PubMed ID: 29782498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites.
    Tong J; Manik MK; Im YJ
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):E856-E865. PubMed ID: 29339490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sterol methyltransferases in uncultured bacteria complicate eukaryotic biomarker interpretations.
    Brown MO; Olagunju BO; Giner JL; Welander PV
    Nat Commun; 2023 Apr; 14(1):1859. PubMed ID: 37012227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonvesicular sterol transport: two protein families and a sterol sensor?
    Yang H
    Trends Cell Biol; 2006 Sep; 16(9):427-32. PubMed ID: 16876994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efflux of newly synthesized cholesterol and biosynthetic sterol intermediates from cells. Dependence on acceptor type and on enrichment of cells with cholesterol.
    Johnson WJ; Fischer RT; Phillips MC; Rothblat GH
    J Biol Chem; 1995 Oct; 270(42):25037-46. PubMed ID: 7559634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria.
    Huang Z; London E
    Chem Phys Lipids; 2016 Sep; 199():11-16. PubMed ID: 26964703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional convergence of hopanoids and sterols in membrane ordering.
    Sáenz JP; Sezgin E; Schwille P; Simons K
    Proc Natl Acad Sci U S A; 2012 Aug; 109(35):14236-40. PubMed ID: 22893685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aphid growth and reproduction on plants with altered sterol profiles: Novel insights using Arabidopsis mutant and overexpression lines.
    Chen IW; Grebenok RJ; Schaller H; Zhu-Salzman K; Behmer ST
    J Insect Physiol; 2020; 123():104054. PubMed ID: 32275907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.