These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38329095)

  • 1. Collective Variable-Based Enhanced Sampling: From Human Learning to Machine Learning.
    Fu H; Bian H; Shao X; Cai W
    J Phys Chem Lett; 2024 Feb; 15(6):1774-1783. PubMed ID: 38329095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MLCV: Bridging Machine-Learning-Based Dimensionality Reduction and Free-Energy Calculation.
    Chen H; Liu H; Feng H; Fu H; Cai W; Shao X; Chipot C
    J Chem Inf Model; 2022 Jan; 62(1):1-8. PubMed ID: 34939790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reweighted Manifold Learning of Collective Variables from Enhanced Sampling Simulations.
    Rydzewski J; Chen M; Ghosh TK; Valsson O
    J Chem Theory Comput; 2022 Dec; 18(12):7179-7192. PubMed ID: 36367826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Adaptive Path Collective Variable: A Versatile Biasing Approach to Compute the Average Transition Path and Free Energy of Molecular Transitions.
    Pérez de Alba Ortíz A; Vreede J; Ensing B
    Methods Mol Biol; 2019; 2022():255-290. PubMed ID: 31396907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective data-driven collective variables for free energy calculations from metadynamics of paths.
    Müllender L; Rizzi A; Parrinello M; Carloni P; Mandelli D
    PNAS Nexus; 2024 Apr; 3(4):pgae159. PubMed ID: 38665160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing Molecular Dynamics Trajectories Thermodynamically through Artificial Intelligence.
    Liu X; Xing J; Fu H; Shao X; Cai W
    J Chem Theory Comput; 2024 Jan; 20(2):665-676. PubMed ID: 38193858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning.
    Kleiman DE; Nadeem H; Shukla D
    J Phys Chem B; 2023 Dec; 127(50):10669-10681. PubMed ID: 38081185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral gap optimization of order parameters for sampling complex molecular systems.
    Tiwary P; Berne BJ
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2839-44. PubMed ID: 26929365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepCV: A Deep Learning Framework for Blind Search of Collective Variables in Expanded Configurational Space.
    Ketkaew R; Luber S
    J Chem Inf Model; 2022 Dec; 62(24):6352-6364. PubMed ID: 36445176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unfolding Hidden Barriers by Active Enhanced Sampling.
    Zhang J; Chen M
    Phys Rev Lett; 2018 Jul; 121(1):010601. PubMed ID: 30028174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Network and Nearest Neighbor Algorithms for Enhancing Sampling of Molecular Dynamics.
    Galvelis R; Sugita Y
    J Chem Theory Comput; 2017 Jun; 13(6):2489-2500. PubMed ID: 28437616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Nucleation Collective Variables with Graph Neural Networks.
    Dietrich FM; Advincula XR; Gobbo G; Bellucci MA; Salvalaglio M
    J Chem Theory Comput; 2024 Feb; 20(4):1600-1611. PubMed ID: 37877821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and enhanced sampling of molecular systems with smooth and nonlinear data-driven collective variables.
    Hashemian B; Millán D; Arroyo M
    J Chem Phys; 2013 Dec; 139(21):214101. PubMed ID: 24320358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale Reweighted Stochastic Embedding: Deep Learning of Collective Variables for Enhanced Sampling.
    Rydzewski J; Valsson O
    J Phys Chem A; 2021 Jul; 125(28):6286-6302. PubMed ID: 34213915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Derived Collective Variables for the Study of Protein Homodimerization in Membrane.
    Majumder A; Straub JE
    J Chem Theory Comput; 2024 Jul; 20(13):5774-5783. PubMed ID: 38918177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Machine Learning Algorithms to Metadynamics for the Elucidation of the Binding Modes and Free Energy Landscape of Drug/Target Interactions: a Case Study.
    Siddiqui GA; Stebani JA; Wragg D; Koutsourelakis PS; Casini A; Gagliardi A
    Chemistry; 2023 Nov; 29(62):e202302375. PubMed ID: 37555841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Collective Variable Discovery for MFSD2A transporter from molecular dynamics simulations.
    Oh M; Rosa M; Xie H; Khelashvili G
    Biophys J; 2024 Jun; ():. PubMed ID: 38932456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One Descriptor to Fold Them All: Harnessing Intuition and Machine Learning to Identify Transferable Lasso Peptide Reaction Coordinates.
    da Hora GCA; Oh M; Nguyen JDM; Swanson JMJ
    J Phys Chem B; 2024 May; 128(17):4063-4075. PubMed ID: 38568862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the Performance of Machine Learning Models in Representing High-Dimensional Free Energy Surfaces and Generating Observables.
    Cendagorta JR; Tolpin J; Schneider E; Topper RQ; Tuckerman ME
    J Phys Chem B; 2020 May; 124(18):3647-3660. PubMed ID: 32275148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular enhanced sampling with autoencoders: On-the-fly collective variable discovery and accelerated free energy landscape exploration.
    Chen W; Ferguson AL
    J Comput Chem; 2018 Sep; 39(25):2079-2102. PubMed ID: 30368832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.