These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38329095)

  • 21. Automated collective variable discovery for MFSD2A transporter from molecular dynamics simulations.
    Oh M; Rosa M; Xie H; Khelashvili G
    Biophys J; 2024 Jun; ():. PubMed ID: 38932456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dimensionality of Collective Variables for Describing Conformational Changes of a Multi-Domain Protein.
    Matsunaga Y; Komuro Y; Kobayashi C; Jung J; Mori T; Sugita Y
    J Phys Chem Lett; 2016 Apr; 7(8):1446-51. PubMed ID: 27049936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated design of collective variables using supervised machine learning.
    Sultan MM; Pande VS
    J Chem Phys; 2018 Sep; 149(9):094106. PubMed ID: 30195289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Collective Variables for Crystallization Simulations-from Early Developments to Recent Advances.
    Neha ; Tiwari V; Mondal S; Kumari N; Karmakar T
    ACS Omega; 2023 Jan; 8(1):127-146. PubMed ID: 36643553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiagent Reinforcement Learning-Based Adaptive Sampling for Conformational Dynamics of Proteins.
    Kleiman DE; Shukla D
    J Chem Theory Comput; 2022 Sep; 18(9):5422-5434. PubMed ID: 36044642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovering Reaction Pathways, Slow Variables, and Committor Probabilities with Machine Learning.
    Chen H; Roux B; Chipot C
    J Chem Theory Comput; 2023 Jul; 19(14):4414-4426. PubMed ID: 37224455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anisotropic Collective Variables with Machine Learning Potential for
    Deng Y; Fu S; Guo J; Xu X; Li H
    ACS Nano; 2023 Jul; 17(14):14099-14113. PubMed ID: 37458408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving the accuracy and convergence of drug permeation simulations via machine-learned collective variables.
    Aydin F; Durumeric AEP; da Hora GCA; Nguyen JDM; Oh MI; Swanson JMJ
    J Chem Phys; 2021 Jul; 155(4):045101. PubMed ID: 34340389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovering Collective Variables of Molecular Transitions via Genetic Algorithms and Neural Networks.
    Hooft F; Pérez de Alba Ortíz A; Ensing B
    J Chem Theory Comput; 2021 Apr; 17(4):2294-2306. PubMed ID: 33662202
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Collective Variables for Free Energy Surface Tailoring: Understanding and Modifying Functionality in Systems Dominated by Rare Events.
    Mendels D; de Pablo JJ
    J Phys Chem Lett; 2022 Mar; 13(12):2830-2837. PubMed ID: 35324208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine Learning and Enhanced Sampling Simulations for Computing the Potential of Mean Force and Standard Binding Free Energy.
    Bertazzo M; Gobbo D; Decherchi S; Cavalli A
    J Chem Theory Comput; 2021 Aug; 17(8):5287-5300. PubMed ID: 34260233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human Learning for Molecular Simulations: The Collective Variables Dashboard in VMD.
    Hénin J; Lopes LJS; Fiorin G
    J Chem Theory Comput; 2022 Mar; 18(3):1945-1956. PubMed ID: 35143194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How exascale computing can shape drug design: A perspective from multiscale QM/MM molecular dynamics simulations and machine learning-aided enhanced sampling algorithms.
    Rossetti G; Mandelli D
    Curr Opin Struct Biol; 2024 Jun; 86():102814. PubMed ID: 38631106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collective variable-based enhanced sampling and machine learning.
    Chen M
    Eur Phys J B; 2021; 94(10):211. PubMed ID: 34697536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational methods for exploring protein conformations.
    Allison JR
    Biochem Soc Trans; 2020 Aug; 48(4):1707-1724. PubMed ID: 32756904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Charting molecular free-energy landscapes with an atlas of collective variables.
    Hashemian B; Millán D; Arroyo M
    J Chem Phys; 2016 Nov; 145(17):174109. PubMed ID: 27825245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations.
    Van Speybroeck V; Bocus M; Cnudde P; Vanduyfhuys L
    ACS Catal; 2023 Sep; 13(17):11455-11493. PubMed ID: 37671178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. OneOPES, a Combined Enhanced Sampling Method to Rule Them All.
    Rizzi V; Aureli S; Ansari N; Gervasio FL
    J Chem Theory Comput; 2023 Sep; 19(17):5731-5742. PubMed ID: 37603295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. tICA-Metadynamics for Identifying Slow Dynamics in Membrane Permeation.
    Oh M; da Hora GCA; Swanson JMJ
    J Chem Theory Comput; 2023 Dec; 19(23):8886-8900. PubMed ID: 37943658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finding an Optimal Pathway on a Multidimensional Free-Energy Landscape.
    Fu H; Chen H; Wang X; Chai H; Shao X; Cai W; Chipot C
    J Chem Inf Model; 2020 Nov; 60(11):5366-5374. PubMed ID: 32402199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.