BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38329145)

  • 1. In silico prediction of ocular toxicity of compounds using explainable machine learning and deep learning approaches.
    Zhou Y; Wang Z; Huang Z; Li W; Chen Y; Yu X; Tang Y; Liu G
    J Appl Toxicol; 2024 Jun; 44(6):892-907. PubMed ID: 38329145
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Kang Y; Jeong B; Lim DH; Lee D; Lim KM
    J Toxicol Environ Health A; 2021 Dec; 84(23):960-972. PubMed ID: 34328061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive modeling of estrogen receptor agonism, antagonism, and binding activities using machine- and deep-learning approaches.
    Ciallella HL; Russo DP; Aleksunes LM; Grimm FA; Zhu H
    Lab Invest; 2021 Apr; 101(4):490-502. PubMed ID: 32778734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. XML-CIMT: Explainable Machine Learning (XML) Model for Predicting Chemical-Induced Mitochondrial Toxicity.
    Jaganathan K; Rehman MU; Tayara H; Chong KT
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Analysis and Prediction of Hematotoxicity Using Deep Learning Approaches.
    Long TZ; Shi SH; Liu S; Lu AP; Liu ZQ; Li M; Hou TJ; Cao DS
    J Chem Inf Model; 2023 Jan; 63(1):111-125. PubMed ID: 36472475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods.
    Hua Y; Shi Y; Cui X; Li X
    Mol Divers; 2021 Aug; 25(3):1585-1596. PubMed ID: 34196933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Explainable Supervised Machine Learning Model for Predicting Respiratory Toxicity of Chemicals Using Optimal Molecular Descriptors.
    Jaganathan K; Tayara H; Chong KT
    Pharmaceutics; 2022 Apr; 14(4):. PubMed ID: 35456666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of machine learning and deep learning models for toxicity prediction.
    Guo W; Liu J; Dong F; Song M; Li Z; Khan MKH; Patterson TA; Hong H
    Exp Biol Med (Maywood); 2023 Nov; 248(21):1952-1973. PubMed ID: 38057999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico prediction of chemical aquatic toxicity by multiple machine learning and deep learning approaches.
    Xu M; Yang H; Liu G; Tang Y; Li W
    J Appl Toxicol; 2022 Nov; 42(11):1766-1776. PubMed ID: 35653511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Protein Features and Pathways Responsible for Toxicity Using Machine Learning and Tox21: Implications for Predictive Toxicology.
    Moukheiber L; Mangione W; Moukheiber M; Maleki S; Falls Z; Gao M; Samudrala R
    Molecules; 2022 May; 27(9):. PubMed ID: 35566372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning based multi-model approach for predicting drug-like chemical compound's toxicity.
    Saravanan KM; Wan JF; Dai L; Zhang J; Zhang JZH; Zhang H
    Methods; 2024 Jun; 226():164-175. PubMed ID: 38702021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico prediction of drug-induced developmental toxicity by using machine learning approaches.
    Zhang H; Mao J; Qi HZ; Ding L
    Mol Divers; 2020 Nov; 24(4):1281-1290. PubMed ID: 31486961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction Model of Ocular Metastases in Gastric Adenocarcinoma: Machine Learning-Based Development and Interpretation Study.
    Zou J; Shen YK; Wu SN; Wei H; Li QJ; Xu SH; Ling Q; Kang M; Liu ZL; Huang H; Chen X; Wang YX; Liao XL; Tan G; Shao Y
    Technol Cancer Res Treat; 2024; 23():15330338231219352. PubMed ID: 38233736
    [No Abstract]   [Full Text] [Related]  

  • 14. Computational modeling approaches for developing a synergistic effect prediction model of estrogen agonistic activity.
    Seo M; Choi J; Park J; Yu WJ; Kim S
    Chemosphere; 2024 Feb; 349():140926. PubMed ID: 38092168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Silico Prediction of Chemical-Induced Hepatocellular Hypertrophy Using Molecular Descriptors.
    Ambe K; Ishihara K; Ochibe T; Ohya K; Tamura S; Inoue K; Yoshida M; Tohkin M
    Toxicol Sci; 2018 Apr; 162(2):667-675. PubMed ID: 29309657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico prediction of hERG blockers using machine learning and deep learning approaches.
    Chen Y; Yu X; Li W; Tang Y; Liu G
    J Appl Toxicol; 2023 Oct; 43(10):1462-1475. PubMed ID: 37093028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The applications of deep learning algorithms on in silico druggable proteins identification.
    Yu L; Xue L; Liu F; Li Y; Jing R; Luo J
    J Adv Res; 2022 Nov; 41():219-231. PubMed ID: 36328750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on machine learning methods for in silico toxicity prediction.
    Idakwo G; Luttrell J; Chen M; Hong H; Zhou Z; Gong P; Zhang C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):169-191. PubMed ID: 30628866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases.
    Rifaioglu AS; Atas H; Martin MJ; Cetin-Atalay R; Atalay V; Doğan T
    Brief Bioinform; 2019 Sep; 20(5):1878-1912. PubMed ID: 30084866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints.
    Feng H; Zhang L; Li S; Liu L; Yang T; Yang P; Zhao J; Arkin IT; Liu H
    Toxicol Lett; 2021 Apr; 340():4-14. PubMed ID: 33421549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.