These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 38329241)

  • 1. Comprehensive Technology for Recycling and Regenerating Materials from Spent Lithium Iron Phosphate Battery.
    Lei S; Sun W; Yang Y
    Environ Sci Technol; 2024 Feb; 58(8):3609-3628. PubMed ID: 38329241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on the recycling of spent lithium iron phosphate batteries.
    Zhao T; Li W; Traversy M; Choi Y; Ghahreman A; Zhao Z; Zhang C; Zhao W; Song Y
    J Environ Manage; 2024 Feb; 351():119670. PubMed ID: 38039588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y
    Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z
    Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmentally friendly automated line for recovering aluminium and lithium iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zhan J; Zu L; Bai Y; Li H
    Waste Manag Res; 2021 Sep; 39(9):1164-1173. PubMed ID: 33407040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycling of Spent Lithium Iron Phosphate Cathodes: Challenges and Progress.
    Yao H; Zhang Y; Yang G; Fu L; Li Y; Zhou L; Geng S; Xiang Y; Seh ZW
    ACS Appl Mater Interfaces; 2024 Dec; 16(49):67087-67105. PubMed ID: 39282747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature thermal pretreatment process for recycling inner core of spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Peng J; Li H
    Waste Manag Res; 2021 Jan; 39(1):146-155. PubMed ID: 32938335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferrioxalate photolysis-assisted green recovery of valuable resources from spent lithium iron phosphate batteries.
    Hua Y; Zhang Z
    Waste Manag; 2024 Jun; 183():199-208. PubMed ID: 38761484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new model of trajectory in eddy current separation for recovering spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Bai Y; Gao S; Gao Y
    Waste Manag; 2019 Dec; 100():1-9. PubMed ID: 31493683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined mechanical process recycling technology for recovering copper and aluminium components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; He S; Gao Y; Peng J
    Waste Manag Res; 2019 Aug; 37(8):767-780. PubMed ID: 31218930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental impact assessment of second life and recycling for LiFePO
    Wang Y; Tang B; Shen M; Wu Y; Qu S; Hu Y; Feng Y
    J Environ Manage; 2022 Jul; 314():115083. PubMed ID: 35447455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies.
    Quan J; Zhao S; Song D; Wang T; He W; Li G
    Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environment-friendly, efficient process for mechanical recovery of waste lithium iron phosphate batteries.
    Bai Y; Zhu H; Zu L; Zhang Y; Bi H
    Waste Manag Res; 2023 Oct; 41(10):1549-1558. PubMed ID: 37070218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proof-of-Concept study of ion-exchange method for the recycling of LiFePO
    Zhang X; Liu Z; Qu D
    Waste Manag; 2023 Feb; 157():1-7. PubMed ID: 36512923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Critical Review on the Recycling Strategy of Lithium Iron Phosphate from Electric Vehicles.
    Zhang M; Wang L; Wang S; Ma T; Jia F; Zhan C
    Small Methods; 2023 Jul; 7(7):e2300125. PubMed ID: 37086120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the recycling characteristics and trends of spent lithium-ion battery: a scientometric study.
    Zhao S; Quan J; Wang T; Song D; Huang J; He W; Li G
    Environ Sci Pollut Res Int; 2022 Feb; 29(7):9448-9461. PubMed ID: 34855174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges to Future Development of Spent Lithium Ion Batteries Recovery from Environmental and Technological Perspectives.
    Xiao J; Li J; Xu Z
    Environ Sci Technol; 2020 Jan; 54(1):9-25. PubMed ID: 31849217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium recovery and solvent reuse from electrolyte of spent lithium-ion battery.
    Xu R; Lei S; Wang T; Yi C; Sun W; Yang Y
    Waste Manag; 2023 Jul; 167():135-140. PubMed ID: 37262939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Regeneration of Degraded LiFePO
    Li C; Gong R; Zhang Y; Meng Q; Dong P
    Molecules; 2024 Jul; 29(14):. PubMed ID: 39064918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach.
    Roy JJ; Cao B; Madhavi S
    Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.