BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38329431)

  • 21. Quantifying the microstructural and biomechanical changes in the porcine ventricles during growth and remodelling.
    Ahmad F; Soe S; Albon J; Errington R; Theobald P
    Acta Biomater; 2023 Nov; 171():166-192. PubMed ID: 37797709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A viscoelastic constitutive model for human femoropopliteal arteries.
    Zhang W; Jadidi M; Razian SA; Holzapfel GA; Kamenskiy A; Nordsletten DA
    Acta Biomater; 2023 Oct; 170():68-85. PubMed ID: 37699504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strain-Level Dependent Nonequilibrium Anisotropic Viscoelasticity: Application to the Abdominal Muscle.
    Latorre M; Montáns FJ
    J Biomech Eng; 2017 Oct; 139(10):. PubMed ID: 28753687
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Right ventricular free wall pacing improves cardiac pump function in severe pulmonary arterial hypertension: a computer simulation analysis.
    Lumens J; Arts T; Broers B; Boomars KA; van Paassen P; Prinzen FW; Delhaas T
    Am J Physiol Heart Circ Physiol; 2009 Dec; 297(6):H2196-205. PubMed ID: 19837949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Viscoelasticity of tau proteins leads to strain rate-dependent breaking of microtubules during axonal stretch injury: predictions from a mathematical model.
    Ahmadzadeh H; Smith DH; Shenoy VB
    Biophys J; 2014 Mar; 106(5):1123-33. PubMed ID: 24606936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading.
    Bonifasi-Lista C; Lake SP; Small MS; Weiss JA
    J Orthop Res; 2005 Jan; 23(1):67-76. PubMed ID: 15607877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viscoelastic properties of the passive mechanical behavior of the porcine carotid artery: influence of proximal and distal positions.
    García A; Martínez MA; Peña E
    Biorheology; 2012; 49(4):271-88. PubMed ID: 22836081
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Viscoelasticity reduces the dynamic stresses and strains in the vessel wall: implications for vessel fatigue.
    Zhang W; Liu Y; Kassab GS
    Am J Physiol Heart Circ Physiol; 2007 Oct; 293(4):H2355-60. PubMed ID: 17604330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure.
    Chen CY; Caporizzo MA; Bedi K; Vite A; Bogush AI; Robison P; Heffler JG; Salomon AK; Kelly NA; Babu A; Morley MP; Margulies KB; Prosser BL
    Nat Med; 2018 Aug; 24(8):1225-1233. PubMed ID: 29892068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recruitment viscoelasticity of the tendon.
    Raz E; Lanir Y
    J Biomech Eng; 2009 Nov; 131(11):111008. PubMed ID: 20353259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quasi-linear viscoelastic behavior of fresh porcine ureter.
    Wang J; Chen J; Gao X; Li B
    Int Urol Nephrol; 2022 Feb; 54(2):249-256. PubMed ID: 34978664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Recruitment Model of Tendon Viscoelasticity That Incorporates Fibril Creep and Explains Strain-Dependent Relaxation.
    Shearer T; Parnell WJ; Lynch B; Screen HRC; David Abrahams I
    J Biomech Eng; 2020 Jul; 142(7):. PubMed ID: 34043761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tissue Doppler imaging in the left ventricle and right ventricle in healthy children: normal age-related peak systolic velocities, timings, and time differences.
    van der Hulst AE; Delgado V; Ten Harkel AD; Klitsie LM; Filippini LH; Bax JJ; Blom NA; Roest AA
    Eur J Echocardiogr; 2011 Dec; 12(12):953-60. PubMed ID: 21987237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational modelling of left-ventricular diastolic mechanics: effect of fibre orientation and right-ventricle topology.
    Palit A; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    J Biomech; 2015 Feb; 48(4):604-612. PubMed ID: 25596634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation.
    Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1931-42. PubMed ID: 16422405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale.
    Su L; Wang M; Yin J; Ti F; Yang J; Ma C; Liu S; Lu TJ
    Acta Biomater; 2023 Jan; 155():423-435. PubMed ID: 36372152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions Between Structural Remodeling and Hypertrophy in the Right Ventricle in Response to Pulmonary Arterial Hypertension.
    Avazmohammadi R; Mendiola EA; Li DS; Vanderslice P; Dixon RAF; Sacks MS
    J Biomech Eng; 2019 Sep; 141(9):0910161-09101613. PubMed ID: 31260516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The constitutive behaviour of passive heart muscle tissue: a quasi-linear viscoelastic formulation.
    Huyghe JM; van Campen DH; Arts T; Heethaar RM
    J Biomech; 1991; 24(9):841-9. PubMed ID: 1752868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emergent structure-dependent relaxation spectra in viscoelastic fiber networks in extension.
    Dhume RY; Barocas VH
    Acta Biomater; 2019 Mar; 87():245-255. PubMed ID: 30682422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiology-based model of cell viscoelasticity.
    Muñoz JJ; Albo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012708. PubMed ID: 23944493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.