BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38329431)

  • 41. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels.
    Nam S; Hu KH; Butte MJ; Chaudhuri O
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5492-7. PubMed ID: 27140623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distinct time courses and mechanics of right ventricular hypertrophy and diastolic stiffening in a male rat model of pulmonary arterial hypertension.
    Kwan ED; Vélez-Rendón D; Zhang X; Mu H; Patel M; Pursell E; Stowe J; Valdez-Jasso D
    Am J Physiol Heart Circ Physiol; 2021 Oct; 321(4):H702-H715. PubMed ID: 34448637
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiscale Contrasts Between the Right and Left Ventricle Biomechanics in Healthy Adult Sheep and Translational Implications.
    Liu W; Nguyen-Truong M; LeBar K; Labus KM; Gray E; Ahern M; Neelakantan S; Avazmohammadi R; McGilvray KC; Puttlitz CM; Wang Z
    Front Bioeng Biotechnol; 2022; 10():857638. PubMed ID: 35528212
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural Model for Viscoelastic Properties of Pericardial Bioprosthetic Valves.
    Rassoli A; Fatouraee N; Guidoin R
    Artif Organs; 2018 Jun; 42(6):630-639. PubMed ID: 29602267
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Need for Speed: The Importance of Physiological Strain Rates in Determining Myocardial Stiffness.
    Caporizzo MA; Prosser BL
    Front Physiol; 2021; 12():696694. PubMed ID: 34393820
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Normal ranges of right ventricular systolic and diastolic strain measures in children: a systematic review and meta-analysis.
    Levy PT; Sanchez Mejia AA; Machefsky A; Fowler S; Holland MR; Singh GK
    J Am Soc Echocardiogr; 2014 May; 27(5):549-60, e3. PubMed ID: 24582163
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries.
    Craiem D; Rojo FJ; Atienza JM; Armentano RL; Guinea GV
    Phys Med Biol; 2008 Sep; 53(17):4543-54. PubMed ID: 18677037
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Compressive viscoelasticity of freshly excised mouse skin is dependent on specimen thickness, strain level and rate.
    Wang Y; Marshall KL; Baba Y; Lumpkin EA; Gerling GJ
    PLoS One; 2015; 10(3):e0120897. PubMed ID: 25803703
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microstructural properties and mechanics vary between bundles of the human anterior cruciate ligament during stress-relaxation.
    Castile RM; Skelley NW; Babaei B; Brophy RH; Lake SP
    J Biomech; 2016 Jan; 49(1):87-93. PubMed ID: 26643578
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automated model discovery for muscle using constitutive recurrent neural networks.
    Wang LM; Linka K; Kuhl E
    J Mech Behav Biomed Mater; 2023 Sep; 145():106021. PubMed ID: 37473576
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Viscoelastic behavior of the isolated guinea pig left ventricle in diastole.
    Starc V; Yellin EL; Nikolic SD
    Am J Physiol; 1996 Oct; 271(4 Pt 2):H1314-24. PubMed ID: 8897923
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diastolic viscous properties of the intact canine left ventricle.
    Nikolic SD; Tamura K; Tamura T; Dahm M; Frater RW; Yellin EL
    Circ Res; 1990 Aug; 67(2):352-9. PubMed ID: 2376076
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Passive biaxial mechanical properties of isolated canine myocardium.
    Demer LL; Yin FC
    J Physiol; 1983 Jun; 339():615-30. PubMed ID: 6887039
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stress relaxation of porcine tendon under simulated biological environment: experiment and modeling.
    Łagan SD; Liber-Kneć A
    Acta Bioeng Biomech; 2021; 23(1):59-68. PubMed ID: 34846046
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity.
    Doehring TC; Freed AD; Carew EO; Vesely I
    J Biomech Eng; 2005 Aug; 127(4):700-8. PubMed ID: 16121541
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of passive viscoelastic response of the abdominal muscle and related constitutive modeling: stress-relaxation behavior.
    Calvo B; Sierra M; Grasa J; Muñoz MJ; Peña E
    J Mech Behav Biomed Mater; 2014 Aug; 36():47-58. PubMed ID: 24793173
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils.
    Yang F; Das D; Karunakaran K; Genin GM; Thomopoulos S; Chasiotis I
    Acta Biomater; 2023 Jun; 163():63-77. PubMed ID: 35259515
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of microtubules in the viscoelastic properties of isolated cardiac muscle.
    Yamamoto S; Tsutsui H; Takahashi M; Ishibashi Y; Tagawa H; Imanaka-Yoshida K; Saeki Y; Takeshita A
    J Mol Cell Cardiol; 1998 Sep; 30(9):1841-53. PubMed ID: 9769239
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stress relaxation and recovery in tendon and ligament: experiment and modeling.
    Duenwald SE; Vanderby R; Lakes RS
    Biorheology; 2010; 47(1):1-14. PubMed ID: 20448294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.