These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38329516)

  • 21. Rapid aimed limb movements: differential effects of practice on component submovements.
    Abrams RA; Pratt J
    J Mot Behav; 1993 Dec; 25(4):288-98. PubMed ID: 15064195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Practice and Component Submovements: The Roles of Programming and Feedback in Rapid Aimed Limb Movements.
    Pratt J; Abrams RA
    J Mot Behav; 1996 Jun; 28(2):149-156. PubMed ID: 12529216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Submovements in visually-guided and memory-guided reaching tasks: changes in Parkinson's disease.
    Myall DJ; MacAskill MR; Anderson TJ; Jones RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1761-4. PubMed ID: 19163021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Age and Not the Preferred Limb Influences the Kinematic Structure of Pointing Movements.
    Kornatz KW; Poston B; Stelmach GE
    J Funct Morphol Kinesiol; 2021 Dec; 6(4):. PubMed ID: 34940509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Initial and corrective submovement encoding differences within primary motor cortex during precision reaching.
    Schwartze KC; Lee WH; Rouse AG
    bioRxiv; 2023 Jul; ():. PubMed ID: 37461665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinematic analysis of manual tracking in monkeys: characterization of movement intermittencies during a circular tracking task.
    Roitman AV; Massaquoi SG; Takahashi K; Ebner TJ
    J Neurophysiol; 2004 Feb; 91(2):901-11. PubMed ID: 14561685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-related changes in speed and accuracy during rapid targeted center of pressure movements near the posterior limit of the base of support.
    Hernandez ME; Ashton-Miller JA; Alexander NB
    Clin Biomech (Bristol, Avon); 2012 Nov; 27(9):910-6. PubMed ID: 22770467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Age-related differences in movement control: adjusting submovement structure to optimize performance.
    Walker N; Philbin DA; Fisk AD
    J Gerontol B Psychol Sci Soc Sci; 1997 Jan; 52B(1):P40-52. PubMed ID: 9008674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The microstructure of intra- and interpersonal coordination.
    Nazzaro G; Emanuele M; Laroche J; Esposto C; Fadiga L; D'Ausilio A; Tomassini A
    Proc Biol Sci; 2023 Nov; 290(2011):20231576. PubMed ID: 37964525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Submovements grow larger, fewer, and more blended during stroke recovery.
    Rohrer B; Fasoli S; Krebs HI; Volpe B; Frontera WR; Stein J; Hogan N
    Motor Control; 2004 Oct; 8(4):472-83. PubMed ID: 15585902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Action Monitoring Cortical Activity Coupled to Submovements.
    Pereira M; Sobolewski A; Millán JDR
    eNeuro; 2017; 4(5):. PubMed ID: 29071301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Effects of Upper Limb Motor Recovery on Submovement Characteristics among the Patients with Stroke: A Meta-Analysis.
    Naghibi SS; Ghassemi F; Maleki A; Fallah A
    PM R; 2020 Jun; 12(6):589-601. PubMed ID: 31773910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of visual feedback and prior knowledge about feedback on vertical aiming strategies.
    Elliott D; Dutoy C; Andrew M; Burkitt JJ; Grierson LE; Lyons JL; Hayes SJ; Bennett SJ
    J Mot Behav; 2014; 46(6):433-43. PubMed ID: 25204201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Persistence in visual feedback control by the elderly.
    Seidler-Dobrin RD; Stelmach GE
    Exp Brain Res; 1998 Apr; 119(4):467-74. PubMed ID: 9588781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human basal ganglia and the dynamic control of force during on-line corrections.
    Grafton ST; Tunik E
    J Neurosci; 2011 Feb; 31(5):1600-5. PubMed ID: 21289168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying distinct neural features between the initial and corrective phases of precise reaching using AutoLFADS.
    Lee WH; Karpowicz BM; Pandarinath C; Rouse AG
    bioRxiv; 2024 Feb; ():. PubMed ID: 38352314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of information-based learning benefits with submovement dynamics and muscular rhythmicity.
    Hwang IS; Huang CT; Yang JF; Guo MC
    PLoS One; 2013; 8(12):e82920. PubMed ID: 24367568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid aimed limb movements: age differences and practice effects in component submovements.
    Pratt J; Chasteen AL; Abrams RA
    Psychol Aging; 1994 Jun; 9(2):325-34. PubMed ID: 8054180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impedance modulation and feedback corrections in tracking targets of variable size and frequency.
    Selen LP; van Dieën JH; Beek PJ
    J Neurophysiol; 2006 Nov; 96(5):2750-9. PubMed ID: 16899639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Features of motor performance that drive adaptation in rapid hand movements.
    Novak KE; Miller LE; Houk JC
    Exp Brain Res; 2003 Feb; 148(3):388-400. PubMed ID: 12541149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.