These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38329794)

  • 1. Neoteric Semiembedded β-Tricalcium Phosphate Promotes Osteogenic Differentiation of Mesenchymal Stem Cells under Cyclic Stretch.
    Dai Y; Xie Q; Zhang Y; Sun Y; Zhu S; Wang C; Tan Y; Gou X
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):8289-8300. PubMed ID: 38329794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway.
    Zhang J; Liu X; Li H; Chen C; Hu B; Niu X; Li Q; Zhao B; Xie Z; Wang Y
    Stem Cell Res Ther; 2016 Sep; 7(1):136. PubMed ID: 27650895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifications in Gene Expression in the Process of Osteoblastic Differentiation of Multipotent Bone Marrow-Derived Human Mesenchymal Stem Cells Induced by a Novel Osteoinductive Porous Medical-Grade 3D-Printed Poly(ε-caprolactone)/β-tricalcium Phosphate Composite.
    López-González I; Zamora-Ledezma C; Sanchez-Lorencio MI; Tristante Barrenechea E; Gabaldón-Hernández JA; Meseguer-Olmo L
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study.
    Kasten P; Beyen I; Niemeyer P; Luginbühl R; Bohner M; Richter W
    Acta Biomater; 2008 Nov; 4(6):1904-15. PubMed ID: 18571999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors of osteogenesis influencing various human stem cells on third-generation gelatin/β-tricalcium phosphate scaffold material.
    Weinand C; Nabili A; Khumar M; Dunn JR; Ramella-Roman J; Jeng JC; Jordan MH; Tabata Y
    Rejuvenation Res; 2011 Apr; 14(2):185-94. PubMed ID: 21235414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The osteogenic differentiation of human bone marrow MSCs on HUVEC-derived ECM and β-TCP scaffold.
    Kang Y; Kim S; Bishop J; Khademhosseini A; Yang Y
    Biomaterials; 2012 Oct; 33(29):6998-7007. PubMed ID: 22795852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MBG-Modified β-TCP Scaffold Promotes Mesenchymal Stem Cells Adhesion and Osteogenic Differentiation via a FAK/MAPK Signaling Pathway.
    Liu Y; Ma Y; Zhang J; Xie Q; Wang Z; Yu S; Yuan Y; Liu C
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30283-30296. PubMed ID: 28820575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells.
    Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y
    J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on cytotoxicity of three-dimensional printed β-tricalcium phosphate loaded poly (lactide-co-glycolide) anti-tuberculosis drug sustained release microspheres and its effect on osteogenic differentiation of bone marrow mesenchymal stem cells].
    Gong D; Ma Y; Yang X; Xie W; Shao L; Zhen P
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Sep; 32(9):1131-1136. PubMed ID: 30129348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects.
    Brennan MÁ; Monahan DS; Brulin B; Gallinetti S; Humbert P; Tringides C; Canal C; Ginebra MP; Layrolle P
    Acta Biomater; 2021 Nov; 135():689-704. PubMed ID: 34520883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-tricalcium phosphate promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells through macrophages.
    Zheng M; Weng M; Zhang X; Li R; Tong Q; Chen Z
    Biomed Mater; 2021 Feb; 16(2):025005. PubMed ID: 33445164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis.
    Zhang J; Dalbay MT; Luo X; Vrij E; Barbieri D; Moroni L; de Bruijn JD; van Blitterswijk CA; Chapple JP; Knight MM; Yuan H
    Acta Biomater; 2017 Jul; 57():487-497. PubMed ID: 28456657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The stimulation of osteogenic differentiation of mesenchymal stem cells and vascular endothelial growth factor secretion of endothelial cells by β-CaSiO3/β-Ca3(PO4)2 scaffolds.
    Wang C; Lin K; Chang J; Sun J
    J Biomed Mater Res A; 2014 Jul; 102(7):2096-104. PubMed ID: 23894078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boron Nitride Nanotubes Reinforce Tricalcium Phosphate Scaffolds and Promote the Osteogenic Differentiation of Mesenchymal Stem Cells.
    Shuai C; Gao C; Feng P; Xiao T; Yu K; Deng Y; Peng S
    J Biomed Nanotechnol; 2016 May; 12(5):934-47. PubMed ID: 27305816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Modified β-Tricalcium phosphate enhanced stem cell osteogenic differentiation in vitro and bone regeneration in vivo.
    Choy CS; Lee WF; Lin PY; Wu YF; Huang HM; Teng NC; Pan YH; Salamanca E; Chang WJ
    Sci Rep; 2021 Apr; 11(1):9234. PubMed ID: 33927241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polydopamine-coated 3D-printed β-tricalcium phosphate scaffolds to promote the adhesion and osteogenesis of BMSCs for bone-defect repair: mRNA transcriptomic sequencing analysis.
    Sun X; Jiao X; Wang Z; Ma J; Wang T; Zhu D; Li H; Tang L; Li H; Wang C; Li Y; Xu C; Wang J; Gan Y; Jin W
    J Mater Chem B; 2023 Feb; 11(8):1725-1738. PubMed ID: 36723218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic uniaxial compression of human stem cells seeded on a bone biomimetic nanocomposite decreases anti-osteogenic commitment evoked by shear stress.
    Baumgartner W; Schneider I; Hess SC; Stark WJ; Märsmann S; Brunelli M; Calcagni M; Cinelli P; Buschmann J
    J Mech Behav Biomed Mater; 2018 Jul; 83():84-93. PubMed ID: 29684776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells.
    McCullen SD; Zhu Y; Bernacki SH; Narayan RJ; Pourdeyhimi B; Gorga RE; Loboa EG
    Biomed Mater; 2009 Jun; 4(3):035002. PubMed ID: 19390143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.