These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38329859)

  • 21. CQ
    Yan Z; Zhou J; Wong WF
    IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):11600-11611. PubMed ID: 37314899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks.
    Wu J; Chua Y; Zhang M; Li G; Li H; Tan KC
    IEEE Trans Neural Netw Learn Syst; 2023 Jan; 34(1):446-460. PubMed ID: 34288879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An exact mapping from ReLU networks to spiking neural networks.
    Stanojevic A; Woźniak S; Bellec G; Cherubini G; Pantazi A; Gerstner W
    Neural Netw; 2023 Nov; 168():74-88. PubMed ID: 37742533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep Learning With Spiking Neurons: Opportunities and Challenges.
    Pfeiffer M; Pfeil T
    Front Neurosci; 2018; 12():774. PubMed ID: 30410432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gradient-based feature-attribution explainability methods for spiking neural networks.
    Bitar A; Rosales R; Paulitsch M
    Front Neurosci; 2023; 17():1153999. PubMed ID: 37829721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved Residual Network based on norm-preservation for visual recognition.
    Mahaur B; Mishra KK; Singh N
    Neural Netw; 2023 Jan; 157():305-322. PubMed ID: 36375348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DIET-SNN: A Low-Latency Spiking Neural Network With Direct Input Encoding and Leakage and Threshold Optimization.
    Rathi N; Roy K
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; 34(6):3174-3182. PubMed ID: 34596559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-Latency Spiking Neural Networks Using Pre-Charged Membrane Potential and Delayed Evaluation.
    Hwang S; Chang J; Oh MH; Min KK; Jang T; Park K; Yu J; Lee JH; Park BG
    Front Neurosci; 2021; 15():629000. PubMed ID: 33679308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human-Level Control Through Directly Trained Deep Spiking Q-Networks.
    Liu G; Deng W; Xie X; Huang L; Tang H
    IEEE Trans Cybern; 2023 Nov; 53(11):7187-7198. PubMed ID: 36063509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey.
    Dampfhoffer M; Mesquida T; Valentian A; Anghel L
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):11906-11921. PubMed ID: 37027264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effective Transfer Learning Algorithm in Spiking Neural Networks.
    Zhan Q; Liu G; Xie X; Sun G; Tang H
    IEEE Trans Cybern; 2022 Dec; 52(12):13323-13335. PubMed ID: 34270439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing spiking neural networks with hybrid top-down attention.
    Liu F; Zhao R
    Front Neurosci; 2022; 16():949142. PubMed ID: 36071719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences.
    He W; Wu Y; Deng L; Li G; Wang H; Tian Y; Ding W; Wang W; Xie Y
    Neural Netw; 2020 Dec; 132():108-120. PubMed ID: 32866745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring Adversarial Attack in Spiking Neural Networks With Spike-Compatible Gradient.
    Liang L; Hu X; Deng L; Wu Y; Li G; Ding Y; Li P; Xie Y
    IEEE Trans Neural Netw Learn Syst; 2023 May; 34(5):2569-2583. PubMed ID: 34473634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks.
    Guo Y; Wu H; Gao B; Qian H
    Front Neurosci; 2019; 13():812. PubMed ID: 31447634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward Scalable, Efficient, and Accurate Deep Spiking Neural Networks With Backward Residual Connections, Stochastic Softmax, and Hybridization.
    Panda P; Aketi SA; Roy K
    Front Neurosci; 2020; 14():653. PubMed ID: 32694977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chip-In-Loop SNN Proxy Learning: a new method for efficient training of spiking neural networks.
    Liu Y; Liu T; Hu Y; Liao W; Xing Y; Sheik S; Qiao N
    Front Neurosci; 2023; 17():1323121. PubMed ID: 38239830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning.
    Lee C; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2018; 12():435. PubMed ID: 30123103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SPIDE: A purely spike-based method for training feedback spiking neural networks.
    Xiao M; Meng Q; Zhang Z; Wang Y; Lin Z
    Neural Netw; 2023 Apr; 161():9-24. PubMed ID: 36736003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence.
    Fang W; Chen Y; Ding J; Yu Z; Masquelier T; Chen D; Huang L; Zhou H; Li G; Tian Y
    Sci Adv; 2023 Oct; 9(40):eadi1480. PubMed ID: 37801497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.