These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38330503)

  • 21. Shape memory alloy-driven undulatory locomotion of a soft biomimetic ray robot.
    Kim HS; Heo JK; Choi IG; Ahn SH; Chu WS
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34020436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of braking conditions on nanoparticle emissions from passenger car friction brakes.
    Vojtíšek-Lom M; Vaculík M; Pechout M; Hopan F; Arul Raj AF; Penumarti S; Horák JS; Popovicheva O; Ondráček J; Doušová B
    Sci Total Environ; 2021 Sep; 788():147779. PubMed ID: 34034186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Remote Actuation Systems for Fully Wearable Assistive Devices: Requirements, Selection, and Optimization for Out-of-the-Lab Application of a Hand Exoskeleton.
    Dittli J; Hofmann UAT; Bützer T; Smit G; Lambercy O; Gassert R
    Front Robot AI; 2020; 7():596185. PubMed ID: 33585573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Evaluation of Smart Textile Actuator with Chain Structure.
    Lee JH; Han MW
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling the Average and Instantaneous Friction Coefficient of a Disc Brake on the Basis of Bench Tests.
    Sawczuk W; Cañás AMR; Ulbrich D; Kowalczyk J
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices.
    Yandell MB; Quinlivan BT; Popov D; Walsh C; Zelik KE
    J Neuroeng Rehabil; 2017 May; 14(1):40. PubMed ID: 28521803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Actuating compact wearable augmented reality devices by multifunctional artificial muscle.
    Kim D; Kim B; Shin B; Shin D; Lee CK; Chung JS; Seo J; Kim YT; Sung G; Seo W; Kim S; Hong S; Hwang S; Han S; Kang D; Lee HS; Koh JS
    Nat Commun; 2022 Jul; 13(1):4155. PubMed ID: 35851053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-Sensing Pneumatic Compressing Actuator.
    Lin N; Zheng H; Li Y; Wang R; Chen X; Zhang X
    Front Neurorobot; 2020; 14():572856. PubMed ID: 33362501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermo-Mechanical Coupling Analyses for Al Alloy Brake Discs with Al
    Jiang L; Jiang Y; Yu L; Yang H; Li Z; Ding Y
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31569630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle.
    Lee NJ; Kang CG
    PLoS One; 2015; 10(8):e0135459. PubMed ID: 26267883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tribological Aspects Concerning the Study of Overhead Crane Brakes.
    Ungureanu M; Medan N; Ungureanu NS; Pop N; Nadolny K
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suit-type Wearable Robot Powered by Shape-memory-alloy-based Fabric Muscle.
    Park SJ; Park CH
    Sci Rep; 2019 Jun; 9(1):9157. PubMed ID: 31235870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of Shape Memory Alloy Coil Spring Actuator for Improving Performance in Cyclic Actuation.
    Koh JS
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30463218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shape Memory Alloy-Based Wearables: A Review, and Conceptual Frameworks on HCI and HRI in Industry 4.0.
    Srivastava R; Alsamhi SH; Murray N; Devine D
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shape Memory Alloy (SMA) Actuators: The Role of Material, Form, and Scaling Effects.
    Kim MS; Heo JK; Rodrigue H; Lee HT; Pané S; Han MW; Ahn SH
    Adv Mater; 2023 Aug; 35(33):e2208517. PubMed ID: 37074738
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Sabelhaus AP; Mehta RK; Wertz AT; Majidi C
    Front Robot AI; 2022; 9():888261. PubMed ID: 35655533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electro-pneumatic pumps for soft robotics.
    Diteesawat RS; Helps T; Taghavi M; Rossiter J
    Sci Robot; 2021 Feb; 6(51):. PubMed ID: 34043529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-Locomotive Soft Actuator Based on Asymmetric Microstructural Ti
    Hu Y; Yang L; Yan Q; Ji Q; Chang L; Zhang C; Yan J; Wang R; Zhang L; Wu G; Sun J; Zi B; Chen W; Wu Y
    ACS Nano; 2021 Mar; 15(3):5294-5306. PubMed ID: 33650851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tribological Behavior of Friction Materials of a Disk-Brake Pad Braking System Affected by Structural Changes-A Review.
    Ilie F; Cristescu AC
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Compact Soft Robotic Wrist Brace With Origami Actuators.
    Liu S; Fang Z; Liu J; Tang K; Luo J; Yi J; Hu X; Wang Z
    Front Robot AI; 2021; 8():614623. PubMed ID: 33842555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.