These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38330636)
21. Unrolled-DOT: an interpretable deep network for diffuse optical tomography. Zhao Y; Raghuram A; Wang F; Kim SH; Hielscher A; Robinson JT; Veeraraghavan A J Biomed Opt; 2023 Mar; 28(3):036002. PubMed ID: 36908760 [TBL] [Abstract][Full Text] [Related]
22. LRR-CED: low-resolution reconstruction-aware convolutional encoder-decoder network for direct sparse-view CT image reconstruction. Kandarpa VSS; Perelli A; Bousse A; Visvikis D Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35738249 [No Abstract] [Full Text] [Related]
23. Deep neural network inspired by iterative shrinkage-thresholding algorithm with data consistency (NISTAD) for fast Undersampled MRI reconstruction. Qiu W; Li D; Jin X; Liu F; Sun B Magn Reson Imaging; 2020 Jul; 70():134-144. PubMed ID: 32353530 [TBL] [Abstract][Full Text] [Related]
24. DREAM-Net: Deep Residual Error Iterative Minimization Network for Sparse-View CT Reconstruction. Zhang Y; Hu D; Hao S; Liu J; Quan G; Zhang Y; Ji X; Chen Y IEEE J Biomed Health Inform; 2023 Jan; 27(1):480-491. PubMed ID: 36449585 [TBL] [Abstract][Full Text] [Related]
25. Computationally efficient deep neural network for computed tomography image reconstruction. Wu D; Kim K; Li Q Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144 [TBL] [Abstract][Full Text] [Related]
26. A neural network with encoded visible edge prior for limited-angle computed tomography reconstruction. Ma G; Zhang Y; Zhao X; Wang T; Li H Med Phys; 2021 Oct; 48(10):6464-6481. PubMed ID: 34482570 [TBL] [Abstract][Full Text] [Related]
27. Shading correction assisted iterative cone-beam CT reconstruction. Yang C; Wu P; Gong S; Wang J; Lyu Q; Tang X; Niu T Phys Med Biol; 2017 Oct; 62(22):8495-8520. PubMed ID: 29077573 [TBL] [Abstract][Full Text] [Related]
28. Total-body low-dose CT image denoising using a prior knowledge transfer technique with a contrastive regularization mechanism. Fu M; Duan Y; Cheng Z; Qin W; Wang Y; Liang D; Hu Z Med Phys; 2023 May; 50(5):2971-2984. PubMed ID: 36542423 [TBL] [Abstract][Full Text] [Related]
29. Deep compressed sensing MRI via a gradient-enhanced fusion model. Dai Y; Wang C; Wang H Med Phys; 2023 Mar; 50(3):1390-1405. PubMed ID: 36695158 [TBL] [Abstract][Full Text] [Related]
30. l0 regularization based on a prior image incorporated non-local means for limited-angle X-ray CT reconstruction. Zhang L; Zeng L; Guo Y J Xray Sci Technol; 2018; 26(3):481-498. PubMed ID: 29562578 [TBL] [Abstract][Full Text] [Related]
31. Iterative deep neural networks based on proximal gradient descent for image restoration. Lv T; Pan Z; Wei W; Yang G; Song J; Wang X; Sun L; Li Q; Sun X PLoS One; 2022; 17(11):e0276373. PubMed ID: 36331931 [TBL] [Abstract][Full Text] [Related]
32. MetaInv-Net: Meta Inversion Network for Sparse View CT Image Reconstruction. Zhang H; Liu B; Yu H; Dong B IEEE Trans Med Imaging; 2021 Feb; 40(2):621-634. PubMed ID: 33104506 [TBL] [Abstract][Full Text] [Related]
33. Wavelet subband discriminator for efficient unsupervised chest X-ray image restoration. Song J; Ye JC Med Phys; 2023 Apr; 50(4):2263-2278. PubMed ID: 36341576 [TBL] [Abstract][Full Text] [Related]
34. Accurate and robust sparse-view angle CT image reconstruction using deep learning and prior image constrained compressed sensing (DL-PICCS). Zhang C; Li Y; Chen GH Med Phys; 2021 Oct; 48(10):5765-5781. PubMed ID: 34458996 [TBL] [Abstract][Full Text] [Related]
35. On Hallucinations in Tomographic Image Reconstruction. Bhadra S; Kelkar VA; Brooks FJ; Anastasio MA IEEE Trans Med Imaging; 2021 Nov; 40(11):3249-3260. PubMed ID: 33950837 [TBL] [Abstract][Full Text] [Related]
36. Highly robust reconstruction framework for three-dimensional optical imaging based on physical model constrained neural networks. Chen X; Meng Y; Wang L; Zhou W; Chen D; Xie H; Ren S Phys Med Biol; 2024 Mar; 69(7):. PubMed ID: 38394682 [No Abstract] [Full Text] [Related]
37. CAIR: Combining integrated attention with iterative optimization learning for sparse-view CT reconstruction. Cheng W; He J; Liu Y; Zhang H; Wang X; Liu Y; Zhang P; Chen H; Gui Z Comput Biol Med; 2023 Sep; 163():107161. PubMed ID: 37311381 [TBL] [Abstract][Full Text] [Related]
38. Reconstruction of compressively sampled MR images based on a local shrinkage thresholding algorithm with curvelet transform. Wang H; Zhou Y; Wu X; Wang W; Yao Q Med Biol Eng Comput; 2019 Oct; 57(10):2145-2158. PubMed ID: 31377962 [TBL] [Abstract][Full Text] [Related]
39. High-resolution conductivity reconstruction by electrical impedance tomography using structure-aware hybrid-fusion learning. Yu H; Liu H; Liu Z; Wang Z; Jia J Comput Methods Programs Biomed; 2024 Jan; 243():107861. PubMed ID: 37931580 [TBL] [Abstract][Full Text] [Related]
40. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Kang E; Min J; Ye JC Med Phys; 2017 Oct; 44(10):e360-e375. PubMed ID: 29027238 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]