These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38330636)
41. Technical Note: PYRO-NN: Python reconstruction operators in neural networks. Syben C; Michen M; Stimpel B; Seitz S; Ploner S; Maier AK Med Phys; 2019 Nov; 46(11):5110-5115. PubMed ID: 31389023 [TBL] [Abstract][Full Text] [Related]
42. [Sparse-view CT image restoration Wei Z; Wang Y; Tao X; Jia X; Bian Z; Chen G; Li M; Ma K; Li B; Ma J Nan Fang Yi Ke Da Xue Xue Bao; 2019 Nov; 39(11):1320-1328. PubMed ID: 31852651 [TBL] [Abstract][Full Text] [Related]
43. PILN: A posterior information learning network for blind reconstruction of lung CT images. Chi J; Sun Z; Han X; Yu X; Wang H; Wu C Comput Methods Programs Biomed; 2023 Apr; 232():107449. PubMed ID: 36871547 [TBL] [Abstract][Full Text] [Related]
44. Sam's Net: A Self-Augmented Multistage Deep-Learning Network for End-to-End Reconstruction of Limited Angle CT. Chen C; Xing Y; Gao H; Zhang L; Chen Z IEEE Trans Med Imaging; 2022 Oct; 41(10):2912-2924. PubMed ID: 35576423 [TBL] [Abstract][Full Text] [Related]
45. X-ray Cherenkov-luminescence tomography reconstruction with a three-component deep learning algorithm: Swin transformer, convolutional neural network, and locality module. Feng J; Zhang H; Geng M; Chen H; Jia K; Sun Z; Li Z; Cao X; Pogue BW J Biomed Opt; 2023 Feb; 28(2):026004. PubMed ID: 36818584 [TBL] [Abstract][Full Text] [Related]
46. A novel simulation-driven reconstruction approach for x-ray computed tomography. Hsieh J Med Phys; 2022 Apr; 49(4):2245-2258. PubMed ID: 35102555 [TBL] [Abstract][Full Text] [Related]
47. RBP-DIP: Residual back projection with deep image prior for ill-posed CT reconstruction. Shu Z; Entezari A Neural Netw; 2024 Sep; 180():106740. PubMed ID: 39305785 [TBL] [Abstract][Full Text] [Related]
48. FISTA-NET: Deep Algorithm Unrolling for Cerenkov luminescence tomography. Cao X; Du M; Chen Y; Zhang G; Zhang J; Li W; Li K; Zhao F Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083164 [TBL] [Abstract][Full Text] [Related]
49. Limited parameter denoising for low-dose X-ray computed tomography using deep reinforcement learning. Patwari M; Gutjahr R; Raupach R; Maier A Med Phys; 2022 Jul; 49(7):4540-4553. PubMed ID: 35362172 [TBL] [Abstract][Full Text] [Related]
50. Image quality guided iterative reconstruction for low-dose CT based on CT image statistics. Duan J; Mou X Phys Med Biol; 2021 Sep; 66(18):. PubMed ID: 34352735 [TBL] [Abstract][Full Text] [Related]
51. Spatiotemporal structure-aware dictionary learning-based 4D CBCT reconstruction. Zhi S; Kachelrieß M; Mou X Med Phys; 2021 Oct; 48(10):6421-6436. PubMed ID: 34514608 [TBL] [Abstract][Full Text] [Related]
52. An iterative reconstruction algorithm for unsupervised PET image. Wang S; Liu B; Xie F; Chai L Phys Med Biol; 2024 Feb; 69(5):. PubMed ID: 38346340 [No Abstract] [Full Text] [Related]
53. SALSA-Net: Explainable Deep Unrolling Networks for Compressed Sensing. Song H; Ding Q; Gong J; Meng H; Lai Y Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299870 [TBL] [Abstract][Full Text] [Related]
54. High-quality initial image-guided 4D CBCT reconstruction. Zhi S; Kachelrieß M; Mou X Med Phys; 2020 Jun; 47(5):2099-2115. PubMed ID: 32017128 [TBL] [Abstract][Full Text] [Related]
55. A total variation prior unrolling approach for computed tomography reconstruction. Zhang P; Ren S; Liu Y; Gui Z; Shangguan H; Wang Y; Shu H; Chen Y Med Phys; 2023 May; 50(5):2816-2834. PubMed ID: 36791315 [TBL] [Abstract][Full Text] [Related]
56. Report on the AAPM deep-learning spectral CT Grand Challenge. Sidky EY; Pan X Med Phys; 2024 Feb; 51(2):772-785. PubMed ID: 36938878 [TBL] [Abstract][Full Text] [Related]
57. Ultra-Low-Dose Spectral CT Based on a Multi-level Wavelet Convolutional Neural Network. Lee M; Kim H; Cho HM; Kim HJ J Digit Imaging; 2021 Dec; 34(6):1359-1375. PubMed ID: 34590198 [TBL] [Abstract][Full Text] [Related]
58. RISING: A new framework for model-based few-view CT image reconstruction with deep learning. Evangelista D; Morotti E; Loli Piccolomini E Comput Med Imaging Graph; 2023 Jan; 103():102156. PubMed ID: 36528018 [TBL] [Abstract][Full Text] [Related]
59. Deep-Interior: A new pathway to interior tomographic image reconstruction via a weighted backprojection and deep learning. Zhang C; Chen GH Med Phys; 2024 Feb; 51(2):946-963. PubMed ID: 38063251 [TBL] [Abstract][Full Text] [Related]
60. Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks. Amirian M; Montoya-Zegarra JA; Herzig I; Eggenberger Hotz P; Lichtensteiger L; Morf M; Züst A; Paysan P; Peterlik I; Scheib S; Füchslin RM; Stadelmann T; Schilling FP Med Phys; 2023 Oct; 50(10):6228-6242. PubMed ID: 36995003 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]