These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Effects of surface-modified biochars and activated carbon on the transformation of soil inorganic nitrogen and growth of maize under chromium stress. Zhu Y; Li H; Wu Y; Yin XA; Zhang G Chemosphere; 2019 Jul; 227():124-132. PubMed ID: 30986594 [TBL] [Abstract][Full Text] [Related]
24. Simultaneous reduction of nitrate and Cr(VI) by Pseudomonas aeruginosa strain G12 in wastewater. An Q; Deng S; Xu J; Nan H; Li Z; Song JL Ecotoxicol Environ Saf; 2020 Mar; 191():110001. PubMed ID: 31812281 [TBL] [Abstract][Full Text] [Related]
25. 3D-printed controllable bio-accelerators with sustained release property to boost chromium (VI) inhibited denitrification recovery. Chao C; Niu J; Liu Y; Zhao M; Wan H; Zhai S; Wang Q; Wu Y; Zhao Y J Hazard Mater; 2024 Sep; 480():135928. PubMed ID: 39332254 [TBL] [Abstract][Full Text] [Related]
26. Effect and ameliorative mechanisms of polyoxometalates on the denitrification under sulfonamide antibiotics stress. Guo H; Chen Z; Lu C; Guo J; Li H; Song Y; Han Y; Hou Y Bioresour Technol; 2020 Jun; 305():123073. PubMed ID: 32145698 [TBL] [Abstract][Full Text] [Related]
27. Simultaneous reduction and immobilization of Cr(VI) in seasonally frozen areas: Remediation mechanisms and the role of ageing. Hou R; Wang L; Shen Z; Alessi DS; Hou D J Hazard Mater; 2021 Aug; 415():125650. PubMed ID: 34088176 [TBL] [Abstract][Full Text] [Related]
28. Comparative transcriptomic analysis reveals novel insights into the response to Cr(VI) exposure in Cr(VI) tolerant ectomycorrhizal fungi Pisolithus sp. 1 LS-2017. Shi L; Dong P; Song W; Li C; Lu H; Wen Z; Wang C; Shen Z; Chen Y Ecotoxicol Environ Saf; 2020 Jan; 188():109935. PubMed ID: 31740233 [TBL] [Abstract][Full Text] [Related]
29. Bacteria-driven copper redox reaction coupled electron transfer from Cr(VI) to Cr(III): A new and alternate mechanism of Cr(VI) bioreduction. Min X; Zhang K; Chen J; Chai L; Lin Z; Zou L; Liu W; Ding C; Shi Y J Hazard Mater; 2024 Jan; 461():132485. PubMed ID: 37714006 [TBL] [Abstract][Full Text] [Related]
30. Estimates of heavy metal tolerance and chromium(VI) reducing ability of Pseudomonas aeruginosa CCTCC AB93066: chromium(VI) toxicity and environmental parameters optimization. Kang C; Wu P; Li Y; Ruan B; Zhu N; Dang Z World J Microbiol Biotechnol; 2014 Oct; 30(10):2733-46. PubMed ID: 24980945 [TBL] [Abstract][Full Text] [Related]
31. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1. Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936 [TBL] [Abstract][Full Text] [Related]
32. Synchronous Efficient Reduction of Cr (VI) and Removal of Total Chromium by Corn Extract / Fe (III) System. Sun H; Hua Y; Zhao Y Environ Sci Pollut Res Int; 2022 Apr; 29(19):28552-28564. PubMed ID: 34989997 [TBL] [Abstract][Full Text] [Related]
33. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials. Wang Q; Huang L; Pan Y; Quan X; Li Puma G J Hazard Mater; 2017 Jan; 321():896-906. PubMed ID: 27745961 [TBL] [Abstract][Full Text] [Related]
34. Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr(VI)]. Azeez NA; Dash SS; Gummadi SN; Deepa VS Chemosphere; 2021 Mar; 266():129204. PubMed ID: 33310359 [TBL] [Abstract][Full Text] [Related]
35. Deciphering effects of humic acid in landfill leachate on the simultaneous nitrification, anammox and denitrification (SNAD) system from performance, electron transfer and microbial community. Liu Y; Han Y; Zhang J; Hou Y; Song Y; Lu C; Li H; Guo J Sci Total Environ; 2022 Feb; 809():151178. PubMed ID: 34715234 [TBL] [Abstract][Full Text] [Related]
36. Hydroxylamine addition enhances fast recovery of anammox activity suffering Cr(VI) inhibition. Feng F; Tang X; Qu C; Lu X; Liu Z; Tang J; Tang CJ; Chai L Bioresour Technol; 2021 Jun; 329():124920. PubMed ID: 33677423 [TBL] [Abstract][Full Text] [Related]
37. Probing the single and combined toxicity of PFOS and Cr(VI) to soil bacteria and the interaction mechanisms. Li J; Zheng T; Yuan D; Gao C; Liu C Chemosphere; 2020 Jun; 249():126039. PubMed ID: 32062202 [TBL] [Abstract][Full Text] [Related]
38. Iron as electron donor for denitrification: The efficiency, toxicity and mechanism. Wang R; Xu SY; Zhang M; Ghulam A; Dai CL; Zheng P Ecotoxicol Environ Saf; 2020 May; 194():110343. PubMed ID: 32151862 [TBL] [Abstract][Full Text] [Related]
39. Long-term stability and toxicity effects of three-dimensional electrokinetic remediation on chromium-contaminated soils. Wang Z; He X; Li X; Chen L; Tang T; Cui G; Zhang Q; Liu Y Environ Pollut; 2023 Nov; 337():122461. PubMed ID: 37689131 [TBL] [Abstract][Full Text] [Related]
40. The simultaneous removal of the combined pollutants of hexavalent chromium and o-nitrophenol by Chlamydomonas reinhardtii. Wei S; Cao J; Ma X; Ping J; Zhang C; Ke T; Zhang Y; Tao Y; Chen L Ecotoxicol Environ Saf; 2020 Jul; 198():110648. PubMed ID: 32388188 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]