These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38330874)

  • 1. Regulatory mechanisms underlying yeast chemical stress response and development of robust strains for bioproduction.
    Yuan B; Wang WB; Wang YT; Zhao XQ
    Curr Opin Biotechnol; 2024 Apr; 86():103072. PubMed ID: 38330874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies.
    Zhang MM; Chen HQ; Ye PL; Wattanachaisaereekul S; Bai FW; Zhao XQ
    Prog Mol Subcell Biol; 2019; 58():61-83. PubMed ID: 30911889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation.
    Cheng C; Zhang M; Xue C; Bai F; Zhao X
    J Biosci Bioeng; 2017 Feb; 123(2):141-146. PubMed ID: 27576171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol.
    Samakkarn W; Ratanakhanokchai K; Soontorngun N
    Appl Environ Microbiol; 2021 Jul; 87(16):e0058821. PubMed ID: 34105981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S; Jin YS
    Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production.
    Zhao XQ; Bai FW
    J Biotechnol; 2009 Oct; 144(1):23-30. PubMed ID: 19446584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass.
    Pereira FB; Romaní A; Ruiz HA; Teixeira JA; Domingues L
    Bioresour Technol; 2014 Jun; 161():192-9. PubMed ID: 24704884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of yeast for production of fuels and chemicals.
    Nielsen J; Larsson C; van Maris A; Pronk J
    Curr Opin Biotechnol; 2013 Jun; 24(3):398-404. PubMed ID: 23611565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative genomics of Saccharomyces cerevisiae natural isolates for bioenergy production.
    Wohlbach DJ; Rovinskiy N; Lewis JA; Sardi M; Schackwitz WS; Martin JA; Deshpande S; Daum CG; Lipzen A; Sato TK; Gasch AP
    Genome Biol Evol; 2014 Sep; 6(9):2557-66. PubMed ID: 25364804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Saccharomyces cerevisiae for targeted hydrolysis and fermentation of glucuronoxylan through CRISPR/Cas9 genome editing.
    Ravn JL; Manfrão-Netto JHC; Schaubeder JB; Torello Pianale L; Spirk S; Ciklic IF; Geijer C
    Microb Cell Fact; 2024 Mar; 23(1):85. PubMed ID: 38493086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.
    Mira NP; Palma M; Guerreiro JF; Sá-Correia I
    Microb Cell Fact; 2010 Oct; 9():79. PubMed ID: 20973990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of Brazilian bioethanol production - Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process.
    Paulino de Souza J; Dias do Prado C; Eleutherio ECA; Bonatto D; Malavazi I; Ferreira da Cunha A
    Fungal Biol; 2018 Jun; 122(6):583-591. PubMed ID: 29801803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How do yeast cells become tolerant to high ethanol concentrations?
    Snoek T; Verstrepen KJ; Voordeckers K
    Curr Genet; 2016 Aug; 62(3):475-80. PubMed ID: 26758993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges.
    Sharma J; Kumar V; Prasad R; Gaur NA
    Biotechnol Adv; 2022; 56():107925. PubMed ID: 35151789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development and application of Saccharomyces cerevisiae cell-surface display for bioethanol production].
    Yang F; Cao M; Jin Y; Yang X; Tian S
    Sheng Wu Gong Cheng Xue Bao; 2012 Aug; 28(8):901-11. PubMed ID: 23185890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives.
    Matsushika A; Inoue H; Kodaki T; Sawayama S
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):37-53. PubMed ID: 19572128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Condition-specific promoter activities in Saccharomyces cerevisiae.
    Xiong L; Zeng Y; Tang RQ; Alper HS; Bai FW; Zhao XQ
    Microb Cell Fact; 2018 Apr; 17(1):58. PubMed ID: 29631591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From baker's yeast to genetically modified budding yeasts: the scientific evolution of bioethanol industry from sugarcane.
    Ceccato-Antonini SR; Covre EA
    FEMS Yeast Res; 2021 Jan; 20(8):. PubMed ID: 33406233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates.
    Cámara E; Olsson L; Zrimec J; Zelezniak A; Geijer C; Nygård Y
    Biotechnol Adv; 2022; 57():107947. PubMed ID: 35314324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.