These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 38330910)

  • 21. Large Libraries of Structurally Diverse Macrocycles Suitable for Membrane Permeation.
    Nielsen AL; Bognar Z; Mothukuri GK; Zarda A; Schüttel M; Merz ML; Ji X; Will EJ; Chinellato M; Bartling CRO; Strømgaard K; Cendron L; Angelini A; Heinis C
    Angew Chem Int Ed Engl; 2024 Jun; 63(26):e202400350. PubMed ID: 38602024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of DNA-Encoded Disulfide- and Thioether-Cyclized Peptides.
    Pham MV; Bergeron-Brlek M; Heinis C
    Chembiochem; 2020 Feb; 21(4):543-549. PubMed ID: 31381227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Vitro Selection of Macrocyclic α/β
    Wakabayashi R; Kawai M; Katoh T; Suga H
    J Am Chem Soc; 2022 Oct; 144(40):18504-18510. PubMed ID: 36173923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosynthetic Strategies for Macrocyclic Peptides.
    Wang W; Khojasteh SC; Su D
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34206124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intestinal permeability of cyclic peptides: common key backbone motifs identified.
    Beck JG; Chatterjee J; Laufer B; Kiran MU; Frank AO; Neubauer S; Ovadia O; Greenberg S; Gilon C; Hoffman A; Kessler H
    J Am Chem Soc; 2012 Jul; 134(29):12125-33. PubMed ID: 22737969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phage Selection of Cyclic Peptides for Application in Research and Drug Development.
    Deyle K; Kong XD; Heinis C
    Acc Chem Res; 2017 Aug; 50(8):1866-1874. PubMed ID: 28719188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peptide Display Technologies.
    Pitt A; Nims Z
    Methods Mol Biol; 2019; 2001():285-298. PubMed ID: 31134576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frontier Between Cyclic Peptides and Macrocycles.
    Ermert P; Luther A; Zbinden P; Obrecht D
    Methods Mol Biol; 2019; 2001():147-202. PubMed ID: 31134572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetically Encoded Cyclic Peptide Libraries: From Hit to Lead and Beyond.
    Valentine J; Tavassoli A
    Methods Enzymol; 2018; 610():117-134. PubMed ID: 30390796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction and screening of vast libraries of natural product-like macrocyclic peptides using in vitro display technologies.
    Bashiruddin NK; Suga H
    Curr Opin Chem Biol; 2015 Feb; 24():131-8. PubMed ID: 25483262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly selective cyclic peptide ligands for NeutrAvidin and avidin identified by phage display.
    Meyer SC; Gaj T; Ghosh I
    Chem Biol Drug Des; 2006 Jul; 68(1):3-10. PubMed ID: 16923020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving the passive permeability of macrocyclic peptides: Balancing permeability with other physicochemical properties.
    Thansandote P; Harris RM; Dexter HL; Simpson GL; Pal S; Upton RJ; Valko K
    Bioorg Med Chem; 2015 Jan; 23(2):322-7. PubMed ID: 25533323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. mRNA display: from basic principles to macrocycle drug discovery.
    Josephson K; Ricardo A; Szostak JW
    Drug Discov Today; 2014 Apr; 19(4):388-99. PubMed ID: 24157402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyclic Peptides as Drugs for Intracellular Targets: The Next Frontier in Peptide Therapeutic Development.
    Buckton LK; Rahimi MN; McAlpine SR
    Chemistry; 2021 Jan; 27(5):1487-1513. PubMed ID: 32875673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro selection of multiple libraries created by genetic code reprogramming to discover macrocyclic peptides that antagonize VEGFR2 activity in living cells.
    Kawakami T; Ishizawa T; Fujino T; Reid PC; Suga H; Murakami H
    ACS Chem Biol; 2013; 8(6):1205-14. PubMed ID: 23517428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovery of Functional Macrocyclic Peptides by Means of the RaPID System.
    Tsiamantas C; Otero-Ramirez ME; Suga H
    Methods Mol Biol; 2019; 2001():299-315. PubMed ID: 31134577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. cis-Peptide Bonds: A Key for Intestinal Permeability of Peptides? .
    Marelli UK; Ovadia O; Frank AO; Chatterjee J; Gilon C; Hoffman A; Kessler H
    Chemistry; 2015 Oct; 21(43):15148-52. PubMed ID: 26337831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Macrocycles as protein-protein interaction inhibitors.
    Dougherty PG; Qian Z; Pei D
    Biochem J; 2017 Mar; 474(7):1109-1125. PubMed ID: 28298556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Macrocyclic Peptide Library with a Structurally Constrained Cyclopropane-containing Building Block Leads to Thiol-independent Inhibitors of Phosphoglycerate Mutase.
    Okuma R; Kuwahara T; Yoshikane T; Watanabe M; Dranchak P; Inglese J; Shuto S; Goto Y; Suga H
    Chem Asian J; 2020 Sep; 15(17):2631-2636. PubMed ID: 32633882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macrocyclic Peptides Closed by a Thioether-Bipyridyl Unit That Grants Cell Membrane Permeability.
    Chen H; Katoh T; Suga H
    ACS Bio Med Chem Au; 2023 Oct; 3(5):429-437. PubMed ID: 37876498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.