BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38331036)

  • 1. Overview of Nasal Airway and Nasal Breathing Evaluation.
    Xavier R
    Facial Plast Surg; 2024 Jun; 40(3):268-274. PubMed ID: 38331036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peak Nasal Inspiratory Flow (PNIF) for Nasal Breathing Evaluation.
    Xavier R
    Facial Plast Surg; 2024 Jun; 40(3):310-313. PubMed ID: 38158212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Nasal Airflow and Resistance: Computational Modeling for Experimental Measurements.
    Kaneda S; Iida M; Yamamoto H; Sekine M; Ebisumoto K; Sakai A; Takakura Y
    Tokai J Exp Clin Med; 2019 Sep; 44(3):59-67. PubMed ID: 31448398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Nasal Valve Shape on Downstream Volume, Airflow, and Pressure Drop: Importance of the Nasal Valve Revisited.
    Naughton JP; Lee AY; Ramos E; Wootton D; Stupak HD
    Ann Otol Rhinol Laryngol; 2018 Nov; 127(11):745-753. PubMed ID: 30191730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the intranasal flow field through computational fluid dynamics.
    Hildebrandt T; Goubergrits L; Heppt WJ; Bessler S; Zachow S
    Facial Plast Surg; 2013 Apr; 29(2):93-8. PubMed ID: 23564240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy.
    A T Borojeni A; Frank-Ito DO; Kimbell JS; Rhee JS; Garcia GJM
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27525807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithm for Nasal Breathing Impairment Evaluation.
    Xavier R
    Facial Plast Surg; 2024 Jun; 40(3):341-344. PubMed ID: 38301716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Overview of Computational Fluid Dynamics Preoperative Analysis of the Nasal Airway.
    Xavier R; Menger DJ; de Carvalho HC; Spratley J
    Facial Plast Surg; 2021 Jun; 37(3):306-316. PubMed ID: 33556971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The research progress of nasal airflow dynamics].
    Wei J; Li L
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2017 Apr; 31(8):647-649. PubMed ID: 29871337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Evaluation of Relationship Between Body Mass Index and Nasal Geometry Using Objective and Subjective Methods.
    Demir N; Sanli A; Demir G; Erdogan BA; Yilmaz HB; Paksoy M
    J Craniofac Surg; 2015 Sep; 26(6):1861-4. PubMed ID: 26355974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between Subjective Nasal Patency and Intranasal Airflow Distribution.
    Casey KP; Borojeni AA; Koenig LJ; Rhee JS; Garcia GJ
    Otolaryngol Head Neck Surg; 2017 Apr; 156(4):741-750. PubMed ID: 28139171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nasal Obstruction: Overview of Pathophysiology and Presentation of a Clinically Relevant Preoperative Plan for Rhino(Septo)plasty.
    Snoeks S; Velasco E; Talavera K; Hellings PW
    Facial Plast Surg; 2024 Jun; 40(3):275-286. PubMed ID: 38224694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sleep, breathing and the nose.
    Pevernagie DA; De Meyer MM; Claeys S
    Sleep Med Rev; 2005 Dec; 9(6):437-51. PubMed ID: 16242364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional relevance of computational fluid dynamics in the field of nasal obstruction: A literature review.
    Radulesco T; Meister L; Bouchet G; Giordano J; Dessi P; Perrier P; Michel J
    Clin Otolaryngol; 2019 Sep; 44(5):801-809. PubMed ID: 31233660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Objective measurement of nasal airway dimensions and resistance using acoustic rhinometry and rhinomanometry in habitual snorers compared with non-snorers.
    Yahyavi S; Parsa FM; Fereshtehnejad SM; Najimi N
    Eur Arch Otorhinolaryngol; 2008 Dec; 265(12):1483-7. PubMed ID: 18427827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Fluid Dynamics in the assessment of nasal obstruction in children.
    Moreddu E; Meister L; Philip-Alliez C; Triglia JM; Medale M; Nicollas R
    Eur Ann Otorhinolaryngol Head Neck Dis; 2019 Apr; 136(2):87-92. PubMed ID: 30528153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between nasal resistance to airflow and the airspace minimal cross-sectional area.
    Garcia GJM; Hariri BM; Patel RG; Rhee JS
    J Biomech; 2016 Jun; 49(9):1670-1678. PubMed ID: 27083059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional peak mucosal cooling predicts the perception of nasal patency.
    Zhao K; Jiang J; Blacker K; Lyman B; Dalton P; Cowart BJ; Pribitkin EA
    Laryngoscope; 2014 Mar; 124(3):589-95. PubMed ID: 23775640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4-Phase-Rhinomanometry (4PR)--basics and practice 2010.
    Vogt K; Jalowayski AA; Althaus W; Cao C; Han D; Hasse W; Hoffrichter H; Mösges R; Pallanch J; Shah-Hosseini K; Peksis K; Wernecke KD; Zhang L; Zaporoshenko P
    Rhinol Suppl; 2010; 21():1-50. PubMed ID: 20649107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceptual and physiologic effects of histamine challenge on nasal breathing.
    Lane AP; Drake AF; Warren DW
    Am J Rhinol; 2000; 14(1):1-5. PubMed ID: 10711325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.