BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 38331053)

  • 21. Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI.
    Wu Y; Ma Y; Capaldi DP; Liu J; Zhao W; Du J; Xing L
    Magn Reson Imaging; 2020 Feb; 66():93-103. PubMed ID: 30880112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping.
    Liu F; Feng L; Kijowski R
    Magn Reson Med; 2019 Jul; 82(1):174-188. PubMed ID: 30860285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DFUSNN: zero-shot dual-domain fusion unsupervised neural network for parallel MRI reconstruction.
    Chen S; Duan J; Ren X; Wang J; Liu Y
    Phys Med Biol; 2024 May; 69(10):. PubMed ID: 38604186
    [No Abstract]   [Full Text] [Related]  

  • 24. Radial Undersampled MRI Reconstruction Using Deep Learning With Mutual Constraints Between Real and Imaginary Components of K-Space.
    Li Z; Li S; Zhang Z; Wang F; Wu F; Gao S
    IEEE J Biomed Health Inform; 2024 Jun; 28(6):3583-3596. PubMed ID: 38261493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly accelerated MR parametric mapping by undersampling the k-space and reducing the contrast number simultaneously with deep learning.
    Liu S; Li H; Liu Y; Cheng G; Yang G; Wang H; Zheng H; Liang D; Zhu Y
    Phys Med Biol; 2022 Sep; 67(18):. PubMed ID: 36001990
    [No Abstract]   [Full Text] [Related]  

  • 26. IKWI-net: A cross-domain convolutional neural network for undersampled magnetic resonance image reconstruction.
    Wang Z; Jiang H; Du H; Xu J; Qiu B
    Magn Reson Imaging; 2020 Nov; 73():1-10. PubMed ID: 32730848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global attention-enabled texture enhancement network for MR image reconstruction.
    Li Y; Yang J; Yu T; Chi J; Liu F
    Magn Reson Med; 2023 Nov; 90(5):1919-1931. PubMed ID: 37382206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Undersampled MR image reconstruction using an enhanced recursive residual network.
    Bao L; Ye F; Cai C; Wu J; Zeng K; van Zijl PCM; Chen Z
    J Magn Reson; 2019 Aug; 305():232-246. PubMed ID: 31323504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iterative training of robust k-space interpolation networks for improved image reconstruction with limited scan specific training samples.
    Dawood P; Breuer F; Stebani J; Burd P; Homolya I; Oberberger J; Jakob PM; Blaimer M
    Magn Reson Med; 2023 Feb; 89(2):812-827. PubMed ID: 36226661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical neural architecture search with adaptive global-local feature learning for Magnetic Resonance Image reconstruction.
    Cao C; Huang W; Hu F; Gao X
    Comput Biol Med; 2024 Jan; 168():107774. PubMed ID: 38039897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
    Kofler A; Pali MC; Schaeffter T; Kolbitsch C
    Med Phys; 2023 May; 50(5):2939-2960. PubMed ID: 36565150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complementary time-frequency domain networks for dynamic parallel MR image reconstruction.
    Qin C; Duan J; Hammernik K; Schlemper J; Küstner T; Botnar R; Prieto C; Price AN; Hajnal JV; Rueckert D
    Magn Reson Med; 2021 Dec; 86(6):3274-3291. PubMed ID: 34254355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Undersampled Multi-Contrast MRI Reconstruction Based on Double-Domain Generative Adversarial Network.
    Wei H; Li Z; Wang S; Li R
    IEEE J Biomed Health Inform; 2022 Sep; 26(9):4371-4377. PubMed ID: 35030086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Domain transformation learning for MR image reconstruction from dual domain input.
    Oh C; Chung JY; Han Y
    Comput Biol Med; 2024 Mar; 170():108098. PubMed ID: 38330825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer.
    Li Y; Sun X; Wang S; Li X; Qin Y; Pan J; Chen P
    Phys Med Biol; 2023 Apr; 68(9):. PubMed ID: 36889004
    [No Abstract]   [Full Text] [Related]  

  • 36. Rapid reconstruction of highly undersampled, non-Cartesian real-time cine k-space data using a perceptual complex neural network (PCNN).
    Shen D; Ghosh S; Haji-Valizadeh H; Pathrose A; Schiffers F; Lee DC; Freed BH; Markl M; Cossairt OS; Katsaggelos AK; Kim D
    NMR Biomed; 2021 Jan; 34(1):e4405. PubMed ID: 32875668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Residual RAKI: A hybrid linear and non-linear approach for scan-specific k-space deep learning.
    Zhang C; Moeller S; Demirel OB; Uğurbil K; Akçakaya M
    Neuroimage; 2022 Aug; 256():119248. PubMed ID: 35487456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cooperative-Net: An end-to-end multi-task interaction network for unified reconstruction and segmentation of MR image.
    Li X; Hu Y
    Comput Methods Programs Biomed; 2024 Mar; 245():108045. PubMed ID: 38290292
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method.
    Jun Y; Shin H; Eo T; Kim T; Hwang D
    Med Image Anal; 2021 May; 70():102017. PubMed ID: 33721693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction.
    Zhang P; Li K
    Comput Methods Programs Biomed; 2022 Nov; 226():107168. PubMed ID: 36219892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.