These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 38331074)
1. Toward exclusive stereocomplex crystallization of high-molecular-weight poly(L-lactic acid)/poly(D-lactic acid) blends with outstanding heat resistance via incorporating selective nucleating agents. Wang L; Lu J; Zhang P; Su J; Han J Int J Biol Macromol; 2024 Mar; 262(Pt 1):129976. PubMed ID: 38331074 [TBL] [Abstract][Full Text] [Related]
2. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator. Chang WW; Niu J; Peng H; Rong W Int J Biol Macromol; 2023 Dec; 253(Pt 5):127230. PubMed ID: 37797850 [TBL] [Abstract][Full Text] [Related]
3. Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology. Bao J; Han L; Shan G; Bao Y; Pan P J Phys Chem B; 2015 Oct; 119(39):12689-98. PubMed ID: 26352621 [TBL] [Abstract][Full Text] [Related]
4. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: molecular weight effects. Pan P; Han L; Bao J; Xie Q; Shan G; Bao Y J Phys Chem B; 2015 May; 119(21):6462-70. PubMed ID: 25940864 [TBL] [Abstract][Full Text] [Related]
5. Tailor-Made Dispersion and Distribution of Stereocomplex Crystallites in Poly(l-lactide)/Elastomer Blends toward Largely Enhanced Crystallization Rate and Impact Toughness. Luo Y; Ju Y; Bai H; Liu Z; Zhang Q; Fu Q J Phys Chem B; 2017 Jun; 121(25):6271-6279. PubMed ID: 28587466 [TBL] [Abstract][Full Text] [Related]
6. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt. Tsuji H; Tezuka Y Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428 [TBL] [Abstract][Full Text] [Related]
7. Poly(lactic acid) stereocomplexes: A decade of progress. Tsuji H Adv Drug Deliv Rev; 2016 Dec; 107():97-135. PubMed ID: 27125192 [TBL] [Abstract][Full Text] [Related]
8. Role of Chain Entanglements in the Stereocomplex Crystallization between Poly(lactic acid) Enantiomers. Sun C; Zheng Y; Xu S; Ni L; Li X; Shan G; Bao Y; Pan P ACS Macro Lett; 2021 Aug; 10(8):1023-1028. PubMed ID: 35549120 [TBL] [Abstract][Full Text] [Related]
9. Bio-based poly(lactic acid) foams with enhanced mechanical and heat-resistant properties obtained by facilitating stereocomplex crystallization with addition of D-sorbitol. Wang Y; Zou F; Lin M; Xing S; Peng Q; Li G; Liao X Int J Biol Macromol; 2024 Apr; 265(Pt 1):130902. PubMed ID: 38492697 [TBL] [Abstract][Full Text] [Related]
10. Entirely environment-friendly polylactide composites with outstanding heat resistance and superior mechanical performance fabricated by spunbond technology: Exploring the role of nanofibrillated stereocomplex polylactide crystals. Jalali A; Romero-Diez S; Nofar M; Park CB Int J Biol Macromol; 2021 Dec; 193(Pt B):2210-2220. PubMed ID: 34798187 [TBL] [Abstract][Full Text] [Related]
11. Remarkably enhanced stereocomplex crystallization of high-molar-mass enantiomeric polylactide blends by adding double-grafted copolymers. Yuan L; Deng S; Wang Y; Xiu H; Zhang Q; Bai H Int J Biol Macromol; 2024 Feb; 258(Pt 1):128919. PubMed ID: 38134994 [TBL] [Abstract][Full Text] [Related]
13. Enhanced stereocomplex formation of poly(L-lactic acid) and poly(D-lactic acid) in the presence of stereoblock poly(lactic acid). Fukushima K; Chang YH; Kimura Y Macromol Biosci; 2007 Jun; 7(6):829-35. PubMed ID: 17541929 [TBL] [Abstract][Full Text] [Related]
14. Structure Mediation and Properties of Poly( Yang B; Wang R; Ma HL; Li X; BrĂ¼nig H; Dong Z; Qi Y; Zhang X Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961279 [TBL] [Abstract][Full Text] [Related]
15. Toward ultra-tough and heat-resistant biodegradable polylactide/core-shell rubber blends by regulating the distribution of rubber particles with stereocomplex crystallites. Liu H; Zhao Y; Zheng Y; Chen J; Wang J; Gao G; Bai D Int J Biol Macromol; 2023 Mar; 232():123422. PubMed ID: 36708887 [TBL] [Abstract][Full Text] [Related]
16. Effect of PDLA and Amide Compounds as Mixed Nucleating Agents on Crystallization Behaviors of Poly (l-lactic Acid). Khwanpipat T; Seadan M; Suttiruengwong S Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29976863 [TBL] [Abstract][Full Text] [Related]
17. Relationship between the Stereocomplex Crystallization Behavior and Mechanical Properties of PLLA/PDLA Blends. Park HS; Hong CK Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34199577 [TBL] [Abstract][Full Text] [Related]
18. Exclusive Stereocomplex Crystallization of Linear and Multiarm Star-Shaped High-Molecular-Weight Stereo Diblock Poly(lactic acid)s. Han L; Shan G; Bao Y; Pan P J Phys Chem B; 2015 Nov; 119(44):14270-9. PubMed ID: 26457767 [TBL] [Abstract][Full Text] [Related]
19. Surface Modification of Poly(l-lactic acid) through Stereocomplexation with Enantiomeric Poly(d-lactic acid) and Its Copolymer. Zhu Q; Chang K; Qi L; Li X; Gao W; Gao Q Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34072033 [TBL] [Abstract][Full Text] [Related]
20. Rapid Stereocomplexation between Enantiomeric Comb-Shaped Cellulose-g-poly(L-lactide) Nanohybrids and Poly(D-lactide) from the Melt. Ma P; Jiang L; Xu P; Dong W; Chen M; Lemstra PJ Biomacromolecules; 2015 Nov; 16(11):3723-9. PubMed ID: 26444105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]