BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38331422)

  • 41. The deletion of YLR042c improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae.
    Parachin NS; Bengtsson O; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2010 Sep; 27(9):741-51. PubMed ID: 20641017
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains.
    Dos Santos LV; Carazzolle MF; Nagamatsu ST; Sampaio NM; Almeida LD; Pirolla RA; Borelli G; Corrêa TL; Argueso JL; Pereira GA
    Sci Rep; 2016 Dec; 6():38676. PubMed ID: 28000736
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improvement of isobutanol production in Saccharomyces cerevisiae by increasing mitochondrial import of pyruvate through mitochondrial pyruvate carrier.
    Park SH; Kim S; Hahn JS
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7591-8. PubMed ID: 27225475
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Xylose utilization stimulates mitochondrial production of isobutanol and 2-methyl-1-butanol in
    Zhang Y; Lane S; Chen JM; Hammer SK; Luttinger J; Yang L; Jin YS; Avalos JL
    Biotechnol Biofuels; 2019; 12():223. PubMed ID: 31548865
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exploring the xylose paradox in Saccharomyces cerevisiae through in vivo sugar signalomics of targeted deletants.
    Osiro KO; Borgström C; Brink DP; Fjölnisdóttir BL; Gorwa-Grauslund MF
    Microb Cell Fact; 2019 May; 18(1):88. PubMed ID: 31122246
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineering
    Gu P; Li F; Huang Z
    Microorganisms; 2023 Oct; 11(10):. PubMed ID: 37894231
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Endogenous xylose pathway in Saccharomyces cerevisiae.
    Toivari MH; Salusjärvi L; Ruohonen L; Penttilä M
    Appl Environ Microbiol; 2004 Jun; 70(6):3681-6. PubMed ID: 15184173
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessing the effect of d-xylose on the sugar signaling pathways of Saccharomyces cerevisiae in strains engineered for xylose transport and assimilation.
    Osiro KO; Brink DP; Borgström C; Wasserstrom L; Carlquist M; Gorwa-Grauslund MF
    FEMS Yeast Res; 2018 Feb; 18(1):. PubMed ID: 29315378
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae.
    Kim SR; Skerker JM; Kang W; Lesmana A; Wei N; Arkin AP; Jin YS
    PLoS One; 2013; 8(2):e57048. PubMed ID: 23468911
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.
    Kim SR; Ha SJ; Kong II; Jin YS
    Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae.
    Feng Q; Liu ZL; Weber SA; Li S
    PLoS One; 2018; 13(4):e0195633. PubMed ID: 29621349
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic and Transcriptional Analysis of Recombinant Saccharomyces Cerevisiae for Xylose Fermentation: A Feasible and Efficient Approach.
    Shi XC; Zhang Y; Wang T; Wang XC; Lv HB; Laborda P; Duan TT
    IEEE J Biomed Health Inform; 2022 Jun; 26(6):2425-2434. PubMed ID: 34077376
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain.
    Nicolaï T; Deparis Q; Foulquié-Moreno MR; Thevelein JM
    Microb Cell Fact; 2021 Jun; 20(1):114. PubMed ID: 34098954
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving isobutanol production with the yeast
    Wess J; Brinek M; Boles E
    Biotechnol Biofuels; 2019; 12():173. PubMed ID: 31303893
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Turner TL; Zhang GC; Oh EJ; Subramaniam V; Adiputra A; Subramaniam V; Skory CD; Jang JY; Yu BJ; Park I; Jin YS
    Biotechnol Bioeng; 2016 May; 113(5):1075-83. PubMed ID: 26524688
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.