These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38331493)

  • 1. Integrated CO
    Pinto D; Minorello S; Zhou Z; Urakawa A
    J Environ Sci (China); 2024 Jun; 140():113-122. PubMed ID: 38331493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hierarchical Bipyridine-Constructed Framework for Highly Efficient Carbon Dioxide Capture and Catalytic Conversion.
    Dai Z; Sun Q; Liu X; Guo L; Li J; Pan S; Bian C; Wang L; Hu X; Meng X; Zhao L; Deng F; Xiao FS
    ChemSusChem; 2017 Mar; 10(6):1186-1192. PubMed ID: 27860370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoting Ethylene Selectivity from CO
    Yang HJ; Yang H; Hong YH; Zhang PY; Wang T; Chen LN; Zhang FY; Wu QH; Tian N; Zhou ZY; Sun SG
    ChemSusChem; 2018 Mar; 11(5):881-887. PubMed ID: 29446547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The catalytic oxidation of aromatic hydrocarbons over supported metal oxide.
    Kim SC
    J Hazard Mater; 2002 Apr; 91(1-3):285-99. PubMed ID: 11900919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insight into the mechanism of carbon dioxide activation on copper-based catalysts: A theoretical study.
    Ha NN; Thi Thu Ha N; Cam LM
    J Mol Graph Model; 2021 Sep; 107():107979. PubMed ID: 34217023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Light and Electrons to Bend Carbon Dioxide: Developing and Understanding Catalysts for CO
    Cohen KY; Evans R; Dulovic S; Bocarsly AB
    Acc Chem Res; 2022 Apr; 55(7):944-954. PubMed ID: 35290017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic Conversion of CO
    Guo Z; Yu F; Yang Y; Leung CF; Ng SM; Ko CC; Cometto C; Lau TC; Robert M
    ChemSusChem; 2017 Oct; 10(20):4009-4013. PubMed ID: 28840967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of copper phases, their reducibility and dispersion in doped-CuCl2/Al2O3 catalysts for ethylene oxychlorination.
    Muddada NB; Olsbye U; Leofanti G; Gianolio D; Bonino F; Bordiga S; Fuglerud T; Vidotto S; Marsella A; Lamberti C
    Dalton Trans; 2010 Sep; 39(36):8437-49. PubMed ID: 20717598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silk fibroin-derived carbon aerogels embedded with copper nanoparticles for efficient electrocatalytic CO
    Gong S; Xiao X; Wang W; Sam DK; Lu R; Xu Y; Liu J; Wu C; Lv X
    J Colloid Interface Sci; 2021 Oct; 600():412-420. PubMed ID: 34023702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Dense Cu Nanowires for Low-Overpotential CO2 Reduction.
    Raciti D; Livi KJ; Wang C
    Nano Lett; 2015 Oct; 15(10):6829-35. PubMed ID: 26352048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium-Promoted Molybdenum Carbide as a Highly Active and Selective Catalyst for CO
    Porosoff MD; Baldwin JW; Peng X; Mpourmpakis G; Willauer HD
    ChemSusChem; 2017 Jun; 10(11):2408-2415. PubMed ID: 28426923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grain boundary and interface interaction of metal (copper/indium) oxides to boost efficient electrocatalytic carbon dioxide reduction into syngas.
    He R; Luo X; Li L; Zhang Y; Peng L; Xu N; Qiao J
    J Colloid Interface Sci; 2024 Mar; 658():1016-1024. PubMed ID: 38160124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective catalytic reduction of nitric oxide with carbon monoxide over alumina-pellet-supported catalysts in the presence of excess oxygen.
    Liu K; Yu Q; Qin Q; Wang C
    Environ Technol; 2018 Aug; 39(15):1878-1885. PubMed ID: 28617174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-Sensitive CO
    Li Y; Cui F; Ross MB; Kim D; Sun Y; Yang P
    Nano Lett; 2017 Feb; 17(2):1312-1317. PubMed ID: 28094953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires.
    Ma M; Djanashvili K; Smith WA
    Phys Chem Chem Phys; 2015 Aug; 17(32):20861-7. PubMed ID: 26214799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the nanoscale support on carbon deposition and carbon elimination over Ni/gamma-Al2O3 catalyst for CH4 conversion.
    Yang Y; Xu H; Li W
    J Nanosci Nanotechnol; 2004 Sep; 4(7):891-5. PubMed ID: 15570978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating Catalytic Units into Nanomaterials: Rational Design of Multipurpose Catalysts for CO
    Qiu LQ; Li HR; He LN
    Acc Chem Res; 2023 Aug; 56(16):2225-2240. PubMed ID: 37535829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO
    Zhang S; Fan Q; Xia R; Meyer TJ
    Acc Chem Res; 2020 Jan; 53(1):255-264. PubMed ID: 31913013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.