These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 38331499)

  • 41. Synergy between plasmonic and sites on gold nanoparticle-modified bismuth-rich bismuth oxybromide nanotubes for the efficient photocatalytic CC coupling synthesis of ethane.
    Wang Y; Zhao J; Liu Y; Liu G; Ding S; Li Y; Xia J; Li H
    J Colloid Interface Sci; 2022 Jun; 616():649-658. PubMed ID: 35245792
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sunlight-activated 3D-mesoporous-flowerlike Cl-Br bismuth oxides nanosheet solid solution: In situ EG-thermal-sonication synthesis with excellent photodecomposition of ciprofloxacin.
    Mohseni N; Haghighi M; Shabani M
    Environ Res; 2020 Sep; 188():109810. PubMed ID: 32798944
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications.
    Cheng H; Huang B; Dai Y
    Nanoscale; 2014 Feb; 6(4):2009-26. PubMed ID: 24430623
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CO
    Yoshino S; Takayama T; Yamaguchi Y; Iwase A; Kudo A
    Acc Chem Res; 2022 Apr; 55(7):966-977. PubMed ID: 35230087
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photocatalytic Enhancement Strategy with the Introduction of Metallic Bi: A Review on Bi/Semiconductor Photocatalysts.
    Song Y; Bao Z; Gu Y
    Chem Rec; 2024 Mar; 24(3):e202300307. PubMed ID: 38084448
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Porphyrin-based Bi-MOFs with Enriched Surface Bi Active Sites for Boosting Photocatalytic CO
    Cheng M; Yan P; Zheng X; Gao B; Yan X; Zhang G; Cui X; Xu Q
    Chemistry; 2023 Dec; 29(68):e202302395. PubMed ID: 37706350
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxygen vacancies induced by zirconium doping in bismuth ferrite nanoparticles for enhanced photocatalytic performance.
    Wang F; Chen D; Zhang N; Wang S; Qin L; Sun X; Huang Y
    J Colloid Interface Sci; 2017 Dec; 508():237-247. PubMed ID: 28841482
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Contemporary advances in photocatalytic CO
    Haider SN; Qureshi WA; Ali RN; Shaosheng R; Naveed A; Ali A; Yaseen M; Liu Q; Yang J
    Adv Colloid Interface Sci; 2024 Jan; 323():103068. PubMed ID: 38101149
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications.
    Dutta V; Chauhan A; Verma R; Gopalkrishnan C; Nguyen VH
    Beilstein J Nanotechnol; 2022; 13():1316-1336. PubMed ID: 36447562
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of p-n junction initiated mixed-dimensional 0D/2D, 1D/2D, and 2D/2D BiOX (X = Cl, Br, and I)/TiO
    Sreedhar A; Hoai Ta QT; Noh JS
    Chemosphere; 2022 Oct; 305():135478. PubMed ID: 35760130
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO
    Liu L; Huang H; Chen F; Yu H; Tian N; Zhang Y; Zhang T
    Sci Bull (Beijing); 2020 Jun; 65(11):934-943. PubMed ID: 36747426
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-Source Precursors for the Controlled Aqueous Synthesis of Bismuth Oxyhalides.
    Gordon MN; Liu Y; Brown MK; Skrabalak SE
    Inorg Chem; 2023 Jun; 62(24):9640-9648. PubMed ID: 37265371
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bismuth Vacancy-Induced Efficient CO
    Wang L; Wang R; Qiu T; Yang L; Han Q; Shen Q; Zhou X; Zhou Y; Zou Z
    Nano Lett; 2021 Dec; 21(24):10260-10266. PubMed ID: 34767363
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bismuth-doped g-C
    Yang Q; Lin W; Duan Z; Xu S; Chen J; Mai X
    Environ Technol; 2023 Mar; 44(8):1156-1168. PubMed ID: 34704540
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photocatalytic reduction of carbon dioxide by BiTeX (X = Cl, Br, I) under visible-light irradiation.
    Lin YY; Liu FY; Chen IC; Tsai HY; Huang JW; Lin JH; Chen CC
    J Environ Manage; 2024 Jun; 365():121536. PubMed ID: 38909577
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hetero-Motif Molecular Junction Photocatalysts: A New Frontier in Artificial Photosynthesis.
    Zhang L; Liu J; Lan YQ
    Acc Chem Res; 2024 Mar; 57(6):870-883. PubMed ID: 38424009
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Advances in the Application of Bi-Based Compounds in Photocatalytic Reduction of CO
    Zuo C; Su Q; Jiang Z
    Molecules; 2023 May; 28(10):. PubMed ID: 37241723
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strategies based review on near-infrared light-driven bismuth nanocomposites for environmental pollutants degradation.
    Sudhaik A; Parwaz Khan AA; Raizada P; Nguyen VH; Van Le Q; Asiri AM; Singh P
    Chemosphere; 2022 Mar; 291(Pt 2):132781. PubMed ID: 34748802
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface structure-dependent photocatalytic O
    Li H; Ai Z; Zhang L
    Chem Commun (Camb); 2020 Dec; 56(97):15282-15296. PubMed ID: 33165493
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Research status, challenges and future prospects of renewable synthetic fuel catalysts for CO
    Chen Y; Guan B; Wu X; Guo J; Ma Z; Zhang J; Jiang X; Bao S; Cao Y; Yin C; Ai D; Chen Y; Lin H; Huang Z
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11246-11271. PubMed ID: 36517610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.