These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38331516)

  • 1. Hydrochar and synthetic natural gas co-production for a full circular economy implementation via hydrothermal carbonization and methanation: An economic approach.
    González-Arias J; Torres-Sempere G; González-Castaño M; Baena-Moreno FM; Reina TR
    J Environ Sci (China); 2024 Jun; 140():69-78. PubMed ID: 38331516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing hydrothermal carbonization of olive tree pruning: A techno-economic analysis based on experimental results.
    González-Arias J; Baena-Moreno FM; Sánchez ME; Cara-Jiménez J
    Sci Total Environ; 2021 Aug; 784():147169. PubMed ID: 33895509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profitability analysis of thermochemical processes for biomass-waste valorization: a comparison of dry vs wet treatments.
    González-Arias J; Sánchez ME; Cara-Jiménez J
    Sci Total Environ; 2022 Mar; 811():152240. PubMed ID: 34896145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-hydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: A review.
    Wang Q; Wu S; Cui D; Zhou H; Wu D; Pan S; Xu F; Wang Z
    Sci Total Environ; 2022 Dec; 850():158034. PubMed ID: 35970457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-hydrothermal carbonization of pine residual sawdust and non-dewatered sewage sludge - effect of reaction conditions on hydrochar characteristics.
    Cavali M; Benbelkacem H; Kim B; Bayard R; Libardi Junior N; Gonzaga Domingos D; Woiciechowski AL; Castilhos Junior AB
    J Environ Manage; 2023 Aug; 340():117994. PubMed ID: 37119630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Downstream augmentation of hydrothermal carbonization with anaerobic digestion for integrated biogas and hydrochar production from the organic fraction of municipal solid waste: A circular economy concept.
    Sharma HB; Panigrahi S; Sarmah AK; Dubey BK
    Sci Total Environ; 2020 Mar; 706():135907. PubMed ID: 31846879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process.
    Cavali M; Libardi Junior N; de Sena JD; Woiciechowski AL; Soccol CR; Belli Filho P; Bayard R; Benbelkacem H; de Castilhos Junior AB
    Sci Total Environ; 2023 Jan; 857(Pt 3):159627. PubMed ID: 36280070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes.
    Berge ND; Li L; Flora JR; Ro KS
    Waste Manag; 2015 Sep; 43():203-17. PubMed ID: 26049203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biowaste hydrothermal carbonization for hydrochar valorization: Skeleton structure, conversion pathways and clean biofuel applications.
    Zhang Z; Yang J; Qian J; Zhao Y; Wang T; Zhai Y
    Bioresour Technol; 2021 Mar; 324():124686. PubMed ID: 33454447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lab-scale engineered hydrochar production and techno-economic scaling-up analysis.
    Nadarajah K; Rodriguez-Narvaez OM; Ramirez J; Bandala ER; Goonetilleke A
    Waste Manag; 2024 Feb; 174():568-574. PubMed ID: 38141374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.
    Lu X; Jordan B; Berge ND
    Waste Manag; 2012 Jul; 32(7):1353-65. PubMed ID: 22516099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient conversion of waste-to-SNG via hybrid renewable energy systems for circular economy: Process design, energy, and environmental analysis.
    Kuo PC; Illathukandy B; Sun Z; Aziz M
    Waste Manag; 2023 Jul; 166():1-12. PubMed ID: 37137177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical, structural analysis of coal discards (and sewage sludge) (co)-HTC derived biochar for a sustainable carbon economy and evaluation of the liquid by-product.
    Kahilu GM; Bada S; Mulopo J
    Sci Rep; 2022 Oct; 12(1):17532. PubMed ID: 36266312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergizing carbon capture and utilization in a biogas upgrading plant based on calcium chloride: Scaling-up and profitability analysis.
    Baena-Moreno FM; Reina TR; Rodríguez-Galán M; Navarrete B; Vilches LF
    Sci Total Environ; 2021 Mar; 758():143645. PubMed ID: 33250242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochar and hydrochar in the context of anaerobic digestion for a circular approach: An overview.
    Cavali M; Libardi Junior N; Mohedano RA; Belli Filho P; da Costa RHR; de Castilhos Junior AB
    Sci Total Environ; 2022 May; 822():153614. PubMed ID: 35124030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-hydrothermal carbonization of swine manure and lignocellulosic waste: A new strategy for the integral valorization of biomass wastes.
    Ipiales RP; Mohedano AF; Diaz-Portuondo E; Diaz E; de la Rubia MA
    Waste Manag; 2023 Sep; 169():267-275. PubMed ID: 37481937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introducing hydrothermal carbonization to sewage sludge treatment systems-a way of improving energy recovery and economic performance?
    Bagheri M; Wetterlund E
    Waste Manag; 2023 Oct; 170():131-143. PubMed ID: 37573718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal carbonization coupling with liquid dimethyl ether extraction pretreatment of sewage sludge: Hydrochar performance improvement and low-nitrogen biocrude production.
    Wang C; Gui B; Wu C; Sun J; Ling X; Zhang H; Zuo X
    Chemosphere; 2023 Feb; 313():137581. PubMed ID: 36549507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the process wastewater reuse and valorisation during hydrothermal co-carbonization of food and yard waste.
    Sharma HB; Panigrahi S; Vanapalli KR; Cheela VRS; Venna S; Dubey B
    Sci Total Environ; 2022 Feb; 806(Pt 4):150748. PubMed ID: 34648829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multivariate and multi-interface insights into carbon and energy recovery and conversion characteristics of hydrothermal carbonization of biomass waste from duck farm.
    Yan T; Zhang T; Wang S; Andrea K; Peng H; Yuan H; Zhu Z
    Waste Manag; 2023 Oct; 170():154-165. PubMed ID: 37582310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.