These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 38331569)
1. Forecasting seasonal influenza activity in Canada-Comparing seasonal Auto-Regressive integrated moving average and artificial neural network approaches for public health preparedness. Orang A; Berke O; Poljak Z; Greer AL; Rees EE; Ng V Zoonoses Public Health; 2024 May; 71(3):304-313. PubMed ID: 38331569 [TBL] [Abstract][Full Text] [Related]
2. Study on the prediction effect of a combined model of SARIMA and LSTM based on SSA for influenza in Shanxi Province, China. Zhao Z; Zhai M; Li G; Gao X; Song W; Wang X; Ren H; Cui Y; Qiao Y; Ren J; Chen L; Qiu L BMC Infect Dis; 2023 Feb; 23(1):71. PubMed ID: 36747126 [TBL] [Abstract][Full Text] [Related]
3. A new hybrid model SARIMA-ETS-SVR for seasonal influenza incidence prediction in mainland China. Zhao D; Zhang R J Infect Dev Ctries; 2023 Nov; 17(11):1581-1590. PubMed ID: 38064398 [TBL] [Abstract][Full Text] [Related]
4. Good times bad times: Automated forecasting of seasonal cryptosporidiosis in Ontario using machine learning. Berke O; Trotz-Williams L; de Montigny S Can Commun Dis Rep; 2020 Jun; 46(6):192-197. PubMed ID: 32673377 [TBL] [Abstract][Full Text] [Related]
5. Statistical machine learning models for prediction of China's maritime emergency patients in dynamic: ARIMA model, SARIMA model, and dynamic Bayesian network model. Yang P; Cheng P; Zhang N; Luo D; Xu B; Zhang H Front Public Health; 2024; 12():1401161. PubMed ID: 39022407 [TBL] [Abstract][Full Text] [Related]
6. Forecasting the dynamics of cumulative COVID-19 cases (confirmed, recovered and deaths) for top-16 countries using statistical machine learning models: Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Average (SARIMA). ArunKumar KE; Kalaga DV; Sai Kumar CM; Chilkoor G; Kawaji M; Brenza TM Appl Soft Comput; 2021 May; 103():107161. PubMed ID: 33584158 [TBL] [Abstract][Full Text] [Related]
7. Seasonality and Trend Forecasting of Tuberculosis Prevalence Data in Eastern Cape, South Africa, Using a Hybrid Model. Azeez A; Obaromi D; Odeyemi A; Ndege J; Muntabayi R Int J Environ Res Public Health; 2016 Jul; 13(8):. PubMed ID: 27472353 [TBL] [Abstract][Full Text] [Related]
8. Epidemiology and time series analysis of human brucellosis in Tebessa province, Algeria, from 2000 to 2020. Akermi SE; L'Hadj M; Selmane S J Res Health Sci; 2022 Mar; 22(1):e00544. PubMed ID: 36511254 [TBL] [Abstract][Full Text] [Related]
9. Predicting Seasonal Influenza Based on SARIMA Model, in Mainland China from 2005 to 2018. Cong J; Ren M; Xie S; Wang P Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31783697 [TBL] [Abstract][Full Text] [Related]
10. Forecasting and analyzing influenza activity in Hebei Province, China, using a CNN-LSTM hybrid model. Li G; Li Y; Han G; Jiang C; Geng M; Guo N; Wu W; Liu S; Xing Z; Han X; Li Q BMC Public Health; 2024 Aug; 24(1):2171. PubMed ID: 39135162 [TBL] [Abstract][Full Text] [Related]
11. Seasonal autoregressive integrated moving average (SARIMA) time-series model for milk production forecasting in pasture-based dairy cows in the Andean highlands. Perez-Guerra UH; Macedo R; Manrique YP; Condori EA; Gonzáles HI; Fernández E; Luque N; Pérez-Durand MG; García-Herreros M PLoS One; 2023; 18(11):e0288849. PubMed ID: 37972120 [TBL] [Abstract][Full Text] [Related]
12. Analysis and forecasting of syphilis trends in mainland China based on hybrid time series models. Wang ZD; Yang CX; Zhang SK; Wang YB; Xu Z; Feng ZJ Epidemiol Infect; 2024 May; 152():e93. PubMed ID: 38800855 [TBL] [Abstract][Full Text] [Related]
13. A Hybrid Approach Based on Seasonal Autoregressive Integrated Moving Average and Neural Network Autoregressive Models to Predict Scorpion Sting Incidence in El Oued Province, Algeria, From 2005 to 2020. Zenia S; L'Hadj M; Selmane S J Res Health Sci; 2023 Sep; 23(3):e00586. PubMed ID: 38315901 [TBL] [Abstract][Full Text] [Related]
14. Seasonal behavior and forecasting trends of tuberculosis incidence in Holy Kerbala, Iraq. Mohammed SH; Ahmed MM; Al-Mousawi AM; Azeez A Int J Mycobacteriol; 2018; 7(4):361-367. PubMed ID: 30531036 [TBL] [Abstract][Full Text] [Related]
15. Applying SARIMA, ETS, and hybrid models for prediction of tuberculosis incidence rate in Taiwan. Kuan MM PeerJ; 2022; 10():e13117. PubMed ID: 36164599 [TBL] [Abstract][Full Text] [Related]
16. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model. Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283 [TBL] [Abstract][Full Text] [Related]
17. SARFIMA model prediction for infectious diseases: application to hemorrhagic fever with renal syndrome and comparing with SARIMA. Qi C; Zhang D; Zhu Y; Liu L; Li C; Wang Z; Li X BMC Med Res Methodol; 2020 Sep; 20(1):243. PubMed ID: 32993517 [TBL] [Abstract][Full Text] [Related]
18. Research on hand, foot and mouth disease incidence forecasting using hybrid model in mainland China. Zhao D; Zhang H; Zhang R; He S BMC Public Health; 2023 Mar; 23(1):619. PubMed ID: 37003988 [TBL] [Abstract][Full Text] [Related]
19. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models. Adeyinka DA; Muhajarine N BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817 [TBL] [Abstract][Full Text] [Related]
20. Application of a combined model with seasonal autoregressive integrated moving average and support vector regression in forecasting hand-foot-mouth disease incidence in Wuhan, China. Zou JJ; Jiang GF; Xie XX; Huang J; Yang XB Medicine (Baltimore); 2019 Feb; 98(6):e14195. PubMed ID: 30732135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]