BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38331728)

  • 1. The role of GPR81-cAMP-PKA pathway in endurance training-induced intramuscular triglyceride accumulation and mitochondrial content changes in rats.
    Li L; Lai X; Ni Y; Chen S; Qu Y; Hu Z; Sun J
    J Physiol Sci; 2024 Feb; 74(1):8. PubMed ID: 38331728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of cAMP-PKA Pathway in Lactate-Induced Intramuscular Triglyceride Accumulation and Mitochondria Content Increase in Mice.
    Chen S; Zhou L; Sun J; Qu Y; Chen M
    Front Physiol; 2021; 12():709135. PubMed ID: 34588991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of GPR81 in regulating intramuscular triglyceride storage during aerobic exercise in rats.
    Ni Y; Lai X; Li L; Sun J; Qu Y; Chen S; Zhang H
    Physiol Int; 2024 Mar; 111(1):124-141. PubMed ID: 38294536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactate augments intramuscular triglyceride accumulation and mitochondrial biogenesis in rats.
    Zhou L; Chen SY; Han HJ; Sun JQ
    J Biol Regul Homeost Agents; 2021; 35(1):105-115. PubMed ID: 33593047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state.
    van Loon LJ; Goodpaster BH
    Pflugers Arch; 2006 Feb; 451(5):606-16. PubMed ID: 16155759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intramuscular triglyceride synthesis: importance in muscle lipid partitioning in humans.
    Bergman BC; Perreault L; Strauss A; Bacon S; Kerege A; Harrison K; Brozinick JT; Hunerdosse DM; Playdon MC; Holmes W; Bui HH; Sanders P; Siddall P; Wei T; Thomas MK; Kuo MS; Eckel RH
    Am J Physiol Endocrinol Metab; 2018 Feb; 314(2):E152-E164. PubMed ID: 28978544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased intramuscular lipid synthesis and low saturation relate to insulin sensitivity in endurance-trained athletes.
    Bergman BC; Perreault L; Hunerdosse DM; Koehler MC; Samek AM; Eckel RH
    J Appl Physiol (1985); 2010 May; 108(5):1134-41. PubMed ID: 20299618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5.
    Shepherd SO; Cocks M; Tipton KD; Ranasinghe AM; Barker TA; Burniston JG; Wagenmakers AJ; Shaw CS
    J Physiol; 2013 Feb; 591(3):657-75. PubMed ID: 23129790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of prolonged endurance cycling and recovery diet on intramuscular triglyceride content in trained males.
    van Loon LJ; Schrauwen-Hinderling VB; Koopman R; Wagenmakers AJ; Hesselink MK; Schaart G; Kooi ME; Saris WH
    Am J Physiol Endocrinol Metab; 2003 Oct; 285(4):E804-11. PubMed ID: 12783774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance training increases skeletal muscle oxidative capacity and net intramuscular triglyceride breakdown in type I and II fibres of sedentary males.
    Shepherd SO; Cocks M; Tipton KD; Witard OC; Ranasinghe AM; Barker TA; Wagenmakers AJ; Shaw CS
    Exp Physiol; 2014 Jun; 99(6):894-908. PubMed ID: 24706192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects.
    Louche K; Badin PM; Montastier E; Laurens C; Bourlier V; de Glisezinski I; Thalamas C; Viguerie N; Langin D; Moro C
    J Clin Endocrinol Metab; 2013 Dec; 98(12):4863-71. PubMed ID: 24178794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of triglyceride accumulation and mitochondrial maintenance in muscle cells by lactate.
    Sun J; Ye X; Xie M; Ye J
    Sci Rep; 2016 Sep; 6():33732. PubMed ID: 27645401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curcumin induces mitochondrial biogenesis by increasing cyclic AMP levels via phosphodiesterase 4A inhibition in skeletal muscle.
    Hamidie RDR; Shibaguchi T; Yamada T; Koma R; Ishizawa R; Saito Y; Hosoi T; Masuda K
    Br J Nutr; 2021 Dec; 126(11):1642-1650. PubMed ID: 33551001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lactate receptor GPR81 is predominantly expressed in type II human skeletal muscle fibers: potential for lactate autocrine signaling.
    Nordström F; Liegnell R; Apró W; Blackwood SJ; Katz A; Moberg M
    Am J Physiol Cell Physiol; 2023 Feb; 324(2):C477-C487. PubMed ID: 36622074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 7-day high-fat, high-calorie diet induces fibre-specific increases in intramuscular triglyceride and perilipin protein expression in human skeletal muscle.
    Whytock KL; Parry SA; Turner MC; Woods RM; James LJ; Ferguson RA; Ståhlman M; Borén J; Strauss JA; Cocks M; Wagenmakers AJM; Hulston CJ; Shepherd SO
    J Physiol; 2020 Mar; 598(6):1151-1167. PubMed ID: 31958145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramuscular mitochondrial and lipid metabolic changes of rats after regular high-intensity interval training (HIIT) of different training periods.
    Shangguan R; Hu Z; Luo Y; Chen M; Lai X; Sun J; Chen S
    Mol Biol Rep; 2023 Mar; 50(3):2591-2601. PubMed ID: 36626064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular localisation and composition of intramuscular triacylglycerol influence insulin sensitivity in humans.
    Kahn D; Perreault L; Macias E; Zarini S; Newsom SA; Strauss A; Kerege A; Harrison K; Snell-Bergeon J; Bergman BC
    Diabetologia; 2021 Jan; 64(1):168-180. PubMed ID: 33128577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle triacylglycerol hydrolysis does not influence metabolic complications of obesity.
    Sitnick MT; Basantani MK; Cai L; Schoiswohl G; Yazbeck CF; Distefano G; Ritov V; DeLany JP; Schreiber R; Stolz DB; Gardner NP; Kienesberger PC; Pulinilkunnil T; Zechner R; Goodpaster BH; Coen P; Kershaw EE
    Diabetes; 2013 Oct; 62(10):3350-61. PubMed ID: 23835334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle triglyceride and glycogen in endurance exercise: implications for performance.
    Johnson NA; Stannard SR; Thompson MW
    Sports Med; 2004; 34(3):151-64. PubMed ID: 14987125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy.
    Yang H; Yang L
    J Mol Endocrinol; 2016 Aug; 57(2):R93-R108. PubMed ID: 27194812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.