BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 38331812)

  • 1. Protein production dynamics and physiological adaptation of recombinant Komagataella phaffii at near-zero growth rates.
    Rebnegger C; Coltman BL; Kowarz V; Peña DA; Mentler A; Troyer C; Hann S; Schöny H; Koellensperger G; Mattanovich D; Gasser B
    Microb Cell Fact; 2024 Feb; 23(1):43. PubMed ID: 38331812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pichia pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates.
    Rebnegger C; Vos T; Graf AB; Valli M; Pronk JT; Daran-Lapujade P; Mattanovich D
    Appl Environ Microbiol; 2016 Aug; 82(15):4570-4583. PubMed ID: 27208115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and secretion dynamics of prokaryotic Penicillin G acylase in Pichia pastoris.
    Borčinová M; Raschmanová H; Zamora I; Looser V; Marešová H; Hirsch S; Kyslík P; Kovar K
    Appl Microbiol Biotechnol; 2020 Jul; 104(13):5787-5800. PubMed ID: 32424437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.
    Liu Y; El Masoudi A; Pronk JT; van Gulik WM
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox Engineering by Ectopic Overexpression of NADH Kinase in Recombinant Pichia pastoris (
    Tomàs-Gamisans M; Andrade CCP; Maresca F; Monforte S; Ferrer P; Albiol J
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31757828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates.
    Vos T; Hakkaart XD; de Hulster EA; van Maris AJ; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2016 Jun; 15(1):111. PubMed ID: 27317316
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Unver Y; Dagci I
    Front Biosci (Elite Ed); 2024 Jun; 16(2):19. PubMed ID: 38939917
    [No Abstract]   [Full Text] [Related]  

  • 8. Process development for the continuous production of heterologous proteins by the industrial yeast, Komagataella phaffii.
    Cankorur-Cetinkaya A; Narraidoo N; Kasavi C; Slater NKH; Archer DB; Oliver SG
    Biotechnol Bioeng; 2018 Dec; 115(12):2962-2973. PubMed ID: 30267565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterising the metabolic rewiring of extremely slow growing Komagataella phaffii.
    Coltman BL; Rebnegger C; Gasser B; Zanghellini J
    Microb Biotechnol; 2024 Jan; 17(1):e14386. PubMed ID: 38206275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures.
    Boender LG; van Maris AJ; de Hulster EA; Almering MJ; van der Klei IJ; Veenhuis M; de Winde JH; Pronk JT; Daran-Lapujade P
    FEMS Yeast Res; 2011 Dec; 11(8):603-20. PubMed ID: 22093745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergic kinetic and physiological control to improve the efficiency of Komagataella phaffii recombinant protein production bioprocesses.
    Sales-Vallverdú A; Gasset A; Requena-Moreno G; Valero F; Montesinos-Seguí JL; Garcia-Ortega X
    Microb Biotechnol; 2024 Feb; 17(2):e14411. PubMed ID: 38376073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomics and transcriptomics of Pichia pastoris.
    Love KR; Shah KA; Whittaker CA; Wu J; Bartlett MC; Ma D; Leeson RL; Priest M; Borowsky J; Young SK; Love JC
    BMC Genomics; 2016 Aug; 17():550. PubMed ID: 27495311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing xylanase expression by Komagataella phaffii by formate as carbon source and inducer.
    Liu B; Li H; Zhou H; Zhang J
    Appl Microbiol Biotechnol; 2022 Dec; 106(23):7819-7829. PubMed ID: 36307629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable protein production by Komagataella phaffii enabled by ARS plasmids and carbon source-based selection.
    Weiss F; Requena-Moreno G; Pichler C; Valero F; Glieder A; Garcia-Ortega X
    Microb Cell Fact; 2024 Apr; 23(1):116. PubMed ID: 38643119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding exopolysaccharide byproduct formation in Komagataella phaffii fermentation processes for recombinant protein production.
    Steimann T; Heite Z; Germer A; Blank LM; Büchs J; Mann M; Magnus JB
    Microb Cell Fact; 2024 May; 23(1):131. PubMed ID: 38711081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unlocking Nature's Toolbox: glutamate-inducible recombinant protein production from the Komagatella phaffii PEPCK promoter.
    Rajak N; Dey T; Sharma Y; Bellad V; Rangarajan PN
    Microb Cell Fact; 2024 Feb; 23(1):66. PubMed ID: 38402195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Biotin Starvation on Gene Expression in Komagataella phaffii Cells.
    Makeeva AS; Sidorin AV; Ishtuganova VV; Padkina MV; Rumyantsev AM
    Biochemistry (Mosc); 2023 Sep; 88(9):1368-1377. PubMed ID: 37770403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative physiology of Saccharomyces cerevisiae at near-zero specific growth rates.
    Boender LG; de Hulster EA; van Maris AJ; Daran-Lapujade PA; Pronk JT
    Appl Environ Microbiol; 2009 Sep; 75(17):5607-14. PubMed ID: 19592533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific growth rate governs AOX1 gene expression, affecting the production kinetics of Pichia pastoris (Komagataella phaffii) P
    Garrigós-Martínez J; Nieto-Taype MA; Gasset-Franch A; Montesinos-Seguí JL; Garcia-Ortega X; Valero F
    Microb Cell Fact; 2019 Nov; 18(1):187. PubMed ID: 31675969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rationale-based selection of optimal operating strategies and gene dosage impact on recombinant protein production in Komagataella phaffii (Pichia pastoris).
    Nieto-Taype MA; Garrigós-Martínez J; Sánchez-Farrando M; Valero F; Garcia-Ortega X; Montesinos-Seguí JL
    Microb Biotechnol; 2020 Mar; 13(2):315-327. PubMed ID: 31657146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.