These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38331972)

  • 1. Fast simulation for multi-photon, atomic-ensemble quantum model of linear optical systems addressing the curse of dimensionality.
    Oba J; Kajita S; Soeda A
    Sci Rep; 2024 Feb; 14(1):3208. PubMed ID: 38331972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic Hong-Ou-Mandel experiment.
    Lopes R; Imanaliev A; Aspect A; Cheneau M; Boiron D; Westbrook CI
    Nature; 2015 Apr; 520(7545):66-8. PubMed ID: 25832404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hong-Ou-Mandel Interference with Imperfect Single Photon Sources.
    Ollivier H; Thomas SE; Wein SC; de Buy Wenniger IM; Coste N; Loredo JC; Somaschi N; Harouri A; Lemaitre A; Sagnes I; Lanco L; Simon C; Anton C; Krebs O; Senellart P
    Phys Rev Lett; 2021 Feb; 126(6):063602. PubMed ID: 33635709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entangled Photon Spectroscopy.
    Eshun A; Varnavski O; Villabona-Monsalve JP; Burdick RK; Goodson T
    Acc Chem Res; 2022 Apr; 55(7):991-1003. PubMed ID: 35312287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equivalence principle and quantum mechanics: quantum simulation with entangled photons.
    Longhi S
    Opt Lett; 2018 Jan; 43(2):226-229. PubMed ID: 29328244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-speed imaging of spatiotemporal correlations in Hong-Ou-Mandel interference.
    Gao X; Zhang Y; D'Errico A; Heshami K; Karimi E
    Opt Express; 2022 May; 30(11):19456-19464. PubMed ID: 36221721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Hong-Ou-Mandel effect in the context of few-photon scattering.
    Longo P; Cole JH; Busch K
    Opt Express; 2012 May; 20(11):12326-40. PubMed ID: 22714220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proposal for demonstrating the Hong-Ou-Mandel effect with matter waves.
    Lewis-Swan RJ; Kheruntsyan KV
    Nat Commun; 2014 Apr; 5():3752. PubMed ID: 24759808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage.
    Wei YJ; He YM; Chen MC; Hu YN; He Y; Wu D; Schneider C; Kamp M; Höfling S; Lu CY; Pan JW
    Nano Lett; 2014 Nov; 14(11):6515-9. PubMed ID: 25357153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency-domain Hong-Ou-Mandel interference with linear optics.
    Imany P; Odele OD; Alshaykh MS; Lu HH; Leaird DE; Weiner AM
    Opt Lett; 2018 Jun; 43(12):2760-2763. PubMed ID: 29905682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-demand semiconductor single-photon source with near-unity indistinguishability.
    He YM; He Y; Wei YJ; Wu D; Atatüre M; Schneider C; Höfling S; Kamp M; Lu CY; Pan JW
    Nat Nanotechnol; 2013 Mar; 8(3):213-7. PubMed ID: 23377455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization of optical photons for quantum information processing.
    Makino K; Hashimoto Y; Yoshikawa J; Ohdan H; Toyama T; van Loock P; Furusawa A
    Sci Adv; 2016 May; 2(5):e1501772. PubMed ID: 27386536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized quantum interference of correlated photon pairs.
    Kim H; Lee SM; Moon HS
    Sci Rep; 2015 May; 5():9931. PubMed ID: 25951143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indistinguishable photons from a single-photon device.
    Santori C; Fattal D; Vucković J; Solomon GS; Yamamoto Y
    Nature; 2002 Oct; 419(6907):594-7. PubMed ID: 12374958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entanglement swapping with autonomous polarization-entangled photon pairs from a warm atomic ensemble.
    Park J; Kim H; Seb Moon H
    Opt Lett; 2020 Apr; 45(8):2403-2406. PubMed ID: 32287244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1.5-μm band polarization entangled photon-pair source with variable Bell states.
    Arahira S; Kishimoto T; Murai H
    Opt Express; 2012 Apr; 20(9):9862-75. PubMed ID: 22535079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Informationally symmetrical Bell state preparation and measurement.
    Kim YS; Pramanik T; Cho YW; Yang M; Han SW; Lee SY; Kang MS; Moon S
    Opt Express; 2018 Oct; 26(22):29539-29549. PubMed ID: 30470116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active temporal multiplexing of indistinguishable heralded single photons.
    Xiong C; Zhang X; Liu Z; Collins MJ; Mahendra A; Helt LG; Steel MJ; Choi DY; Chae CJ; Leong PH; Eggleton BJ
    Nat Commun; 2016 Mar; 7():10853. PubMed ID: 26996317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum interference of electrically generated single photons from a quantum dot.
    Patel RB; Bennett AJ; Cooper K; Atkinson P; Nicoll CA; Ritchie DA; Shields AJ
    Nanotechnology; 2010 Jul; 21(27):274011. PubMed ID: 20571198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counting of Hong-Ou-Mandel Bunched Optical Photons Using a Fast Pixel Camera.
    Nomerotski A; Keach M; Stankus P; Svihra P; Vintskevich S
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.